

Experiences with the ns-2 Network Simulator -
Explicitly Setting Seeds Considered Harmful

Martina Umlauft Peter Reichl
Women’s Postgraduate College

for Internet Technologies,
Vienna University of Technology,

Favoritenstr. 9-11,
1040 Vienna, Austria

Telecommunications Research Center
Vienna (FTW),

Donau-City-Str. 1,
1220 Vienna, Austria

umlauft@wit.tuwien.ac.at reichl@ftw.at

Abstract
The ns-2 network simulator is one of the most widely
used packet network simulators. In version 2.1b9 its
old random number generator was replaced by an
implementation of MRG32k3a to fix sensitivity to
seeds. Due to bad documentation and re-use of old
scripts many people still use the old API functions to
explicitly set seeds. Unfortunately, this corrupts the
correct function of the new generator and can lead to
correlated simulation results. This might affect the
majority of ns-2 simulation results currently published.
We show why this is the case, illustrate possible ef-
fects, and how to avoid the problem.

1. Introduction

Over the last couple of years, the ns-2 simulator
has become one of the most widely used environments
for packet network simulation. Up until version 2.1b8
it used an implementation of the minimal standard
multiplicative linear congruential generator by Park
and Miller [1] for random number generation. This has
been shown to exhibit several weaknesses: apart from
the short period length of only p=231-2, which can be a
problem for long-running simulations, Entacher and
Hechenleitner [2] showed that it is sensitive to the
chosen seed. Depending on the choice of seeds, it
exhibits correlation between random variables created
with these seeds.

In version 2.1b9, the combined multiple recursive
generator MRG32k3a proposed by L’Ecuyer was in-
troduced as random number generator to remedy these
problems [3, 4, 5]. It is still used in all versions of ns-2
up to and including the current version 2.30.

The old minimal standard generator required to set
seeds for random variables explicitly as shown in a
typical example below:

set rng [new RNG]
$rng seed <n>
set e [new RandomVariable/Exponential]
$e use-rng $rng

This creates a new RNG object (line 1) and seeds it

(line 2) where <n> can be replaced by any positive
integer or 0. In lines 3 and 4 an exponential random
variable which uses this RNG object is set up. Typi-
cally, the seed would be set once in the simulation
script depending on the number of the simulation run.
Then, the final result of the simulation would be calcu-
lated by averaging over the trace output of several
(many) simulation runs. Therefore, if the random num-
bers created by the RNG using these different seeds
are correlated, this results in correlation between the
output of those separate simulation runs. This is, of
course, undesirable.

In the current MRG32k3a implementation the same
approach of setting the seed (hereafter called the “old
API” or “old method”) wrongly overrides the auto-
matic seed generation of the new generator without
giving any error message. Especially experienced users
who re-use old simulation scripts containing the old
seed setting method have no chance to realize that even
though they are using the new implementation of the
random number generator, they can still get correlated
results. Due to this lack of respective error messages
and because of bad documentation - the ns Manual [6]
still mentions the old API functions without any warn-
ing, and it is also still propagated on the ns-user mail-
ing list or in popular lecture notes like [7] (see Sec-

tion 2), this is completely unnoticable to the unsuspect-
ing user.

In this paper we demonstrate by experiment (see
Section 3.1) that using the old seed setting method
compromises the insensitivity of the new RNG to bad
seeds and may again result in correlation between the
random variables if bad seeds are chosen and show
why this is the case (Section 3.2). We illustrate possi-
ble effects on network simulation results using a sim-
ple wired simulation topology (Section 4.1) and a
wireless example (Section 4.2).

As the ns-2 community relies heavily on exchang-
ing hints and scripts between each other, we believe
that this might affect up to 80% of all ns-2 simulation
results currently published. We show how to avoid the
problem in Section 5 and conclude the paper with
some thoughts on the impact on currently published
simulation results in Section 6.

2. Documentation Issues

The official ns-2 manual [6] can be misunderstood
on the issue of correctly seeding the RNG. While it
states “You should only set the seed of the default
RNG.“ on p. 218 it still shows the old API functions
for seed setting on p. 220, 223, and 226 without any
warning that this compromises the seed-insensitivity of
MRG32k3a. Searching for “rng seed“ on
http://www.isi.edu/cgi-bin/nsnam/htsearch (the archive
of the ns-2 user mailing list ns-users@isi.edu) gives 73
matches for 2005 and 2006, as shown in Table 1.

Table 1. Postings on the ns-2 user mailing list.
Type of Posting
Advice or example incorrectly using old method 22
Correct advice in response to seeding question 2
Example containing correct method in other context 7
Ambigous example or advice 4
Advice to use consecutively numbered seeds 2

Also the popular and otherwise excellent lecture

notes by Eitan Altman and Tania Jimenez [7] include
several examples of old API function usage.

3. Undesirable Behavior of the new ns-2
RNG

The MRG32k3a random number generator is due
to L’Ecuyer [3] and belongs to the class of “combined
multiple recursive generators”. Such generators are
defined as normalized linear combinations of J copies
of ordinary multiple recursive generators xj,n of order k
(j = 1, …, J), i.e.

jknjkjnjjnj mxaxax mod)...(,,1,1,. −− ++= (1)

with distinct primes mj and aj,l being naturals be-
tween 0 and mj.

More specifically, MRG32k3a has J=2 components
of order k=3 and a period length of approx. 3.1 × 1057,
and has been demonstrated to behave well for a broad
range of statistical test scenarios. In [5], it is shown
how this generator can be further generalized for pro-
ducing multiple streams and substreams. To this end, it
is proposed to cut the resulting (long) sequence of
random numbers into adjacent streams of length Z=2z
and then partition each such stream into 2v substreams
(blocks) of length W=2z-v. Note that according to [6]
this generator provides 1.8 × 1019 independent streams
of random numbers, each of which consists of 2.3 ×
1015 substreams with a period of 7.6 × 1022 each. In ns-
2, each of these substreams corresponds to an individ-
ual RNG object, hence on creation of a new RNG
object, simply the next substream is used.

In order to start the MRG32k3a, we need initial
values for each of the six variables {x1,0, x1,1, x1,2; x2,0,
x2,1, x2,2} which can conveniently be described as a six-
dimensional “seed vector”. It is crucial to note that the
nearly perfect randomness of the entire (long) se-
quence is of course maintained approximately also on
a stream and substream level and thus for every RNG
object, whereas setting explicitly a new seed vector for
a newly created RNG object only could destroy this
extremely desirable insensitivity property.

3.1. Simple Correlation Experiment

We implemented a simple simulation script where
we set up three uniform random variables using the old
API functions as follows:

for {set i 0} {$i < 3} {
 set rng($i) [new RNG]
 $rng($i) seed $n($i)
 set u($i) [new RandomVariable/Uniform]
 $u($i) use-rng $rng($i)
}

Table 2. Sets of Seeds.

Random variable Set 1
(“good“)

Set 2
(“bad“)

Set 4
(“bad“)

$u(1)/$n(1) 1973272912 1 1
$u(2)/$n(2) 1822174485 2 634005912
$u(3)/$n(3) 1998078925 3 634005911

For the $n($i) we use different sets of seeds as

shown in Table 2. We then interpret the values drawn
for $u(1), $u(2), and $u(3) as a vector and plot
them as shown in Figure 1 for the new MRG32k3a

RNG and the old Park/Miller RNG. We also plot the
results for the new RNG using the new seed setting
method and for the old RNG using a set of known
“good” seeds. The seed values are taken from [2] with
set 1 being a set of known ”good” seeds and sets 2 and
4 consisting of known “bad” seeds for the old
Park/Miller RNG. While the actual numbers generated
are different for MRG32k3a and the Park/Miller RNG,
we can see that the behavior is similarly bad for ”bad”
seed choices (actually, the difference is not noticable at
the resolution of the figures).

 (a1) (a2)

 (b1) (b2)

 (c1) (c2)

Figure 1. Correlation between three random vari-
ables for 10,000 values drawn. Left: MRG32k3a,
right: old Park/Miller RNG. (a1) new (correct) seed-
ing method, (a2) Seedset 1 (known “good” seeds),
(b1/2) Seedset 2, (c1/2) Seedset 4.

3.2. Source Code Inspection

We inspect the files rng.cc (and rng.h) in the
ns/tools directory. The OTcl command $rng
seed <n> is processed in C++ by the command
function on line 219 which eventually calls
RNG::set_package_seed() which passes the
seed into each of the 6 members of next_seed_, the
package-wide 6-dimensional seed vector. It is a static
member of the RNG class; iow. it exists only once for
all objects of type RNG and is shared among them. On
creation, each new RNG object will use the seed vector

to seed itself and then recalculate next_seed_ (line
754ff) to set it up for the next RNG object to be cre-
ated (compare calculation of xj,n above).

Therefore, seeding each new RNG object explicitly
overrides the seed vector calculation mechanism of
MRG32k3a and hard-seeds the RNG to the values
given in the OTcl script! As demonstrated in Sec-
tion 3.1, this leads to correlation among random vari-
ables when bad seeds are chosen.

4. Effects on Network Simulation Results

To illustrate the effect on network simulation re-
sults we investigate 2 examples, a simple wired topol-
ogy and a small wireless example. While these exam-
ples are chosen for simplicity and use very simple
models, an effect can still be shown.

4.1. Simple Wired Topology Example

Analogous to [2] we generated a simple topology
as shown in Figure 2. Node 1 contains a DropTail
Queue with a maximum size of 1000 packets. G1 to
G5 are exponential traffic generators of type Appli-
cation/Traffic/Exponential generating
on/off traffic.

G1

G2

G5

G3

G4

Node 1 Node 2 BW=1 Mbps

III

QS=1000 Packets

Figure 2. Simple wired simulation topology.

During each on-interval 1 packet of 1000 bytes
with an internal “rate” of 1 Gbps is generated (result-
ing in an on-time of 0.08 μs). The mean of the expo-
nentially distributed off-time is set to 41 ms, resulting
in an average arrival rate of
λ = 8000 bits/41 ms = 0.195 Mbps for each generator
and Σλ = 0.976 Mbps total giving a utilization factor of
ρ = Σλ/BW=0.976. Calculating the mean queue length
as

)1(21

2

ρ
ρ

ρ
ρ

−
−

−
=q (2)

we expect an average queue length of
488.20=q packets.

Table 3 gives the seedsets used for the simulations.
Simulation time was 7200 s with a sampling interval of
10 ms. Table 4 shows the average queue lengths meas-
ured for the new and old RNGs using the new seeding
method vs. a known bad seedset for the new RNG and
a known good seedset vs. a known bad seedset for the
old RNG. As can be seen, the use of the bad seedset
leads to higher values for the average queue length
while with the new method or known good seedset the
value is close to the theoretical result.

Table 3. Sets of seeds.

Generator Set 1 (“good“) Set 2 (“bad“)
G1 1973272912 1
G2 1822174485 2
G3 1998078925 3
G4 678622600 4
G5 999157082 5

Table 4. Average queue lengths.

RNG Seedset Avg. Queue
Length

new MRG32k3a New method 20.2996
new MRG32k3a 2 (“bad”) 29.4527
old Park/Miller 1 (“good”) 19.4398
old Park/Miller 2 (“bad”) 24.2785

Figure 3. Distribution of queue lengths.

4.2 Simple Wireless Example

As another example to demonstrate the effect we
chose a simple wireless model (see Figure 4). In this
example, 4 nodes are connected by wireless hops and
CBR traffic is sent via UDP from node N1 via inter-
mediate nodes N2 and N3 to the sink N4. For reasons
of simplicity, we model the wireless channels with a
simple errormodel (ErrorModel in ns-2, installed as

lossmodel on the links between the nodes) which
uses a uniform distribution with an error rate of 10-3 to
randomly drop packets sent on the link. While we are
aware that a uniform error model does not reflect the
reality of a wireless channel well (as errors are bursty
for wireless media) this does not matter as the aim of
the example is just to show that the experienced
burstyness of a channel is changed when a bad method
of seeding the RNG is used.

Each link has a capacity of 1 Mbps and the source
generates CBR traffic with a rate of 0.9 Mbps so all
drops occur due to losses on the links. Each link has its
own errormodel which uses its own RNG which in
turn is either seeded via the incorrect old method with
different seeds or not seeded at all (using the new
method). Simulation time is 600 seconds (a 10 min
flow) for each replication.

N1 N2 N3 N4

Errormodel1:
10-3, uniform

Seed1

Errormodel2:
10-3, uniform

Seed2

Errormodel3:
10-3, uniform

Seed3

G1

BW=1Mbps BW=1Mbps BW=1Mbps

CBR,
0.9Mbps

Figure 4. Simple Wireless Topology.

While with the old method, several replication runs

of the same simulation were differentiated by setting
different seeds for every replication, the API for the
new method offers the next-substream function
to set up the RNG. The code below sets up the 3 RNGs
for the 3 errormodels according to the current replica-
tion (given in $rep).

for {set i 1} {$i < $rep} {incr i} {
 $rng1 next-substream;
 $rng2 next-substream;
 $rng3 next-substream;
}

We investigate the new MRG32k3a generator and

compare the results of 10 replications using the new
method with the known bad seedset 2 from Table 3
using the first 3 seeds 1, 2, and 3 for the RNGs of
Errormodel 1, 2, and 3 respectively.

Figure 5 shows the ECDF of the lengths of good
packet runs. As can be seen, all 10 replications gener-
ated with the new method yield quite similar results
while the result generated with the bad seedset 2 dif-
fers significantly: there are more short and many more
medium sized (approx. 220 packets) runs for the bad

seedset, while the number of really long runs (1000
packets or more) is lower than for the replications
using the correct new method of setting up the RNG.

Figure 5. Lengths of good packet runs.

5. How to Avoid this Problem

This problem can be avoided by only ever using the
new method to seed the RNG as shown in the example
code on p. 217f, Section 24.1.1 in [6] and again below
using the next-substream API function instead of
seeding each of the RNG objects explicitly:

for {set i 1} {$i < $rep} {incr i} {
 $rng1 next-substream;
 $rng2 next-substream;
 $rng3 next-substream;
}

The above sets up 3 RNG objects according to the

current replication given in $rep. Random numbers
drawn from these RNG objects will not be correlated.

Optionally, the defaultRNG object (but none of
the other RNG objects) may be seeded.

6. Conclusion: Impact on Currently Pub-
lished Simulation Results

Using the old method to explicitly set seeds for the
current MRG32k3a RNG in ns-2 (version 2.1b9 and
above) results in overwriting of the package-wide seed
of the generator, thereby confounding the new, auto-
matic seed generation mechanism. If bad seeds are
chosen, this leads to correlation between the generated
random variables. Not only can the ns-2 manual be
misunderstood on this issue, also the majority of post-
ings on the ns-users mailing list for 2005/06 give out-

dated (and therefore incorrect) or outright harmful
advice in this regard (28 incorrect vs. 9 correct). In
addition, other popular literature gives incorrect exam-
ples and no respective error message is thrown. There-
fore, we believe that a very large number (maybe even
the vast majority) of ns-2 simulation results currently
published is based on scripts using an incorrect method
to seed the RNG. Out of those, the number of actually
affected results is hard to estimate as it depends on
several other factors: the choice of seed values (if good
seeds are chosen there is no problem) and how the
RNG objects are used. Results most prone to correla-
tion are those which use several RNG objects seeded
with different seeds within a single simulation run and
consecutively numbered seeds.

The problem can be completely avoided by using
only the new method to seed the RNG which we
strongly recommend!

7. Acknowledgements

This research has been partly funded by the Aus-
trian Federal Ministry for Education, Science, and
Culture, and the European Social Fund (ESF) under
grant 31.963/46-VII/9/2002 and partly by the Austrian
Kplus competence center program.

8. References

[1] S.K. Park and R.W. Miller: Random number generation:
Good ones are hard to find. Communications of the ACM,
31(10), pages 1192–1201, October 1988.
[2] B. Hechenleitner and K. Entacher: On Shortcomings of
the ns-2 Random Number Generator. In T. Znati and B.
McDonald, editors, Communication Networks and Distrib-
uted Systems Modeling and Simulation (CNDS), 2002.
[3] Pierre L’Ecuyer: Good parameters and implementations
for combined multiple recursive random number generators.
Operations Research, 47(1), pages 159–164, 1999.
[4] Pierre L’Ecuyer: Software for uniform random number
generation: Distinguishing the good and the bad. In Proceed-
ings of the 2001 Winter Simulation Conference, pages 95–
105, December 2001.
[5] Pierre L’Ecuyer, et al: An object-oriented random num-
ber package with many long streams and substreams. Opera-
tions Research, 2001.
[6] K. Fall and K. Varadhan (Eds.): The ns Manual (for-
merly ns Notes and Documentation),
http://www.isi.edu/nsnam/
ns/ns-documentation.html, last visited: October 2006.
[7] E. Altman and T. Jimenez: ns-2 for Beginners, lecture
notes, Dec. 2003, http://www-sop.inria.fr/maestro/personnel/
Eitan.Altman/COURS-NS/n3.pdf, last visited: Oct. 2006.

