Routing in Wireless Mesh Networks

Martina Umlauf
umlauf@wit.tuwien.ac.at
DissSE 2007-07-17

About me

- 2005-: PhD student at WIT (Kappel, IS)
 - Advisors: Dietrich (EE), Kastner (CS)
 - WP-Leader EU-Project Track & Trade
- 2001-2005: Telecommunications Research Center Vienna (ftw)
- Master: Computer Science, Specialization: Computer Engineering
- Research Interests:
 - Wireless Computing and Telecommunications
 - Wireless Mesh / Ad-Hoc Networks
- Thesis (working title): "Routing in Wireless Mesh Networks"

Overview

- My Thesis: "Routing in Wireless Mesh Networks"
 - Definition
 - State-of-the-Art
 - Approach
 - Time Plan
- Current Work
 - Ns-2 Random Generator
 - Wireless Network Modelling

Definition / 1: Wireless Mesh Network

"Wireless Backbone" instead of cables
- Less cost
- Faster deployment
- Better upgradability

Application areas:
- Military
- Disaster areas / emergency response
- Civilian: access network to the Internet

Definition / 2: Field of Research

Ad-Hoc Networks
Sensor Networks
Wireless Mesh Networks (WMNs)

Less mobility, less topology & route changes
No battery power constraints, but standard Internet protocols

Definition / 3: The Problem

Routing:
- Hop-count is a bad metric:
 - Links vary over time
 - Far links are usually worse than short links

MAC Interaction:
- Hidden node problem
- Exposed terminal problem
- Flow-in-the-middle problem
State-of-the-Art / 1: Protocol types

- Reactive (on-demand)
 - Build route when flow starts
 - Destroy route when flow ends
 - Drawback: route setup delay
 - Good for frequent route changes
- Pro-active
 - Build route in advance
 - Keep routes up-to-date (communicate changes)
 - Drawback: communication overhead
 - Good when routes change seldom
- Hybrid

State-of-the-Art / 2: Protocols

Classical:
- **OLSR** - Optimized Link State Routing protocol, reactive, RFC 3626 (Clausen, Jaquet, 2003), used in firmwares
- **AODV** - Ad-hoc On-Demand Distance Vector reactive, RFC 3561 (Perkins, Royer, Das, 2003)
- **DSDV** - Dynamic Destination-Sequenced Distance Vector pro-active, one of the oldest (Perkins, 1994)
- **DSR** - Dynamic Source Routing reactive (Johnson, 1994)

Nature inspired:
- Eg. Ant Hoc Net
 - hybrid (DiCaro et al, 2004)

Ant-based Algorithms / 1

- Inspired by nature: behavior of ants
- Single ants are quite stupid, but the whole system exhibits "intelligent" behavior
- Ant Colony Routing (ACR) – distributed version of Ant-based Algorithm, eg.:
 AntNet by Di Caro and Dorigo, 1998
 AntHocNet for MANETs by Di Caro, Ducatelle, Gambardella, 2004:
 - AntNet concept + Extensions
 - Hybrid routing approach: reactive/pro-active

Ant-based Algorithms / 2

1. Whenever an ant moves, it lays a pheromone trail
2. To find its way, an ant:
 - Follows existing trails if there are any.
 - Probability for choosing a trail is proportional to amount of pheromone on the trail.
 - Walks randomly if there are no trails.
3. Pheromone evaporates over time -> unused trails vanish.

- **Trail following** (state transition rule)
 - determines how the ant chooses its way depending on link cost and amount of pheromone found on the trails
- **Trail laying** (pheromone update rule)
 - determines how the pheromone is updated
- **Evaporation** (evaporation rule)
 - determines how fast pheromone evaporates

Ant-based Algorithms / 3

- Forward ants: regularly created, choose next link based on transition rule:
 \[P = \text{Trans}(\text{pheromone}, \text{link cost}) \]

Ant-based Algorithms / 4

- Backward ants:
 - created when forward ant reaches destination node, travels back to from where it came, updates pheromone amounts and measured link costs at all nodes on way back
My Approach

- Simulation with ns-2 simulator
- An implementation of AntNet has just become available

Find new algorithm:
- Based on ant concept
- Probably hybrid between classical and ant-based
- Probably hybrid proactive/reactive routing approach – WMNs are less mobile than MANETs
- Use better cross-layer info to determine link costs
- Reduce number of ants by observing TCP traffic in the network (possible?)
- Idea: use "colored pheromones" to signify QoS classes -> different traffic takes different routes in the network

Time Plan

- **25.7.**: Student poster at INDIN
- **1.8.**: Book chapter of ns-2 RNG paper
- **5.8.**: Define and implement algorithm in ns2; paper for BIONETICS 2007, Budapest
- **21.9.**: Evaluation of wireless models in ns-2; SIMUTools 2008, Marseille
- **7.-9.11.**: FET (Toulouse) – short paper (wireless modelling) under review
- **12/2007**: performance evaluation; publish 2 papers about algorithm
- **05/2008**: Finish Thesis

Overview

My Thesis: "Routing in Wireless Mesh Networks"

- Definition
- State-of-the-Art
- Approach
- Time Plan

Current Work

- Ns-2 Random Generator
- Wireless Network Modelling

Current Work: Ns-2 Random Generator

- Martina Umlauft, Peter Reichl, *Experiences with the ns-2 Network Simulator - Explicitly Setting Seeds Considered Harmful*

 Presented at Wireless Telecommunications Symposium WTS '07, 26.-28. April, Pomona, CA, USA

The ns-2 RNG

- **ns-2 versions <= 2.1b8:** old RNG

 Minimal Standard multiplicative Linear Congruential Generator [Park and Miller, 1988]

 Period \(p=2^{31}-2 \)

 API: \$rng seed \$s;

 Sensitive to seeds [Entacher, Hechenleitner, 2002]

- **ns-2 versions >= 2.1b9 until today:** new RNG

 MRG32k3a [L’Ecuyer, 1999]

 Period \(p = 3.1 \times 10^{57} \)

 API: \$rng next-substream;

 Promises to fix seed-sensitivity -> true?

BUT: bad documentation -> people use old API!

Correlation Experiment

- Set up 3 RNGs
- Draw triplets of values

 \((u(1)) \), \((u(2)) \), \((u(3)) \) – 1,000,000 triplets drawn
- Interpret as vector

 \(<u(1), u(2), u(3)> \)
Correlation Experiment

100,000 triplets drawn

Correlation Experiment

10,000 triplets drawn

Correlation Experiment

1,000 triplets drawn

Result for bad Seed Set 2

New RNG \(/w \) old method & bad seed set

Old RNG \(/w \) bad seed set

10,000 triplets drawn

Result for bad Seed Set 3

New RNG \(/w \) old method & bad seed set

Old RNG \(/w \) bad seed set

10,000 triplets drawn

Wired Topology Example / 1

\[
\begin{align*}
G_1 & \quad \text{Node 1} \\
G_2 & \quad \text{Node 2} \\
G_3 & \quad \text{Node 3} \\
G_4 & \quad \text{Node 4} \\
G_5 & \quad \text{Node 5}
\end{align*}
\]

\(\text{BW}=1 \text{ Mbps} \)

\(\text{QS}=1000 \text{ Packets} \)

\(\lambda = 8000 \text{ bits} / 41 \text{ ms} = 0.195 \text{ Mbps} \)

\(\Sigma \lambda = 0.976 \text{ Mbps} \)

\(p = \Sigma \lambda / \text{BW} = 0.976 \quad \text{utilization factor} \)

\(\rho = \Sigma \lambda / \text{BW} = 0.976 \quad \text{utilization factor} \)

Expected mean queue length:

\(q = \rho / (1 - \rho) \)

\(\mu^2 = 24.488 \text{ pkts} \)

New RNG

New method 19.2056

New RNG

Set 2 - bad 29.4527

Old RNG

Set 2 - good 24.4265

Old RNG

Set 2 - bad 24.2785

Bad seed sets: higher average queue lengths!
Overview

- **My Thesis: "Routing in Wireless Mesh Networks"**
 - Definition
 - State-of-the-Art
 - Approach
 - Time Plan

- **Current Work**
 - Ns-2 Random Generator
 - Wireless Network Modelling

Wireless Example

Simulation time 600s

- N1
- N2
- N3
- N4

- CBR: 50Mbps
- BW = 1Mbps
- BW = 1Mbps
- BW = 1Mbps

- Error model: 10^{-3}, uniform
- RNG1, Seed1
- RNG2, Seed2
- RNG3, Seed3

Run lengths vs. burst lengths:

Bad seed sets: higher percentage of short run lengths!

Current Work: Wireless Network Modelling

- Martina Umlauft, *Some Thoughts on Wireless Network Modelling*, Student Poster, accepted at INDIN ’07, to be presented 2007-07-25

Traditional Reachability Graph G

- n_0
- n_1
- n_2
- n_3
- n_4
- n_5
- n_6
- n_7
- n_8
- $L_{1,3}$
- $L_{4,8}$

- Edges $L_{1,3}$ and $L_{4,8}$ seem independent
- Edges encourage thinking of links as "tunnels" between nodes

Some Observations

- No "tunnel" - so what is a "link"?
 - Unicasts "do not exist" - can lead to: hidden node problem, exposed node problem
 - (Padhye et al, 2005):
 - $\exists L_{i,j} \text{ in } G \text{ iff: } n_i \cap n_j > n_j$
 - with packet loss rate below certain threshold (ETX ≤ 3) ETX (DeCouto et al, 2003)

- Carrier sensing (CCA)
 - A node can "hear" the transmission but SINR is too bad to successfully decode the packet
 - CCA function: channel is busy! Do not send (exposed node problem)

- "Layer 2 interference" vs. "Interference" on layer 1

Vs. Real World Situation

- Theoretical transmission range
- Carrier sense (CCA) range (idealized)

Example of real-world signal propagation as measured in (Kotz et al, 2003)
Proposal: new graph G^* with CCA-edges

Only one paper found which informally uses such a graph (Das et al, 2006).

Transmission of Data Packet $n_1 \rightarrow n_3$

Transmission of ACK $n_3 \rightarrow n_1$

References / Wireless Network Modelling

Thank You!