
Interoperability Issues in Metamodelling Platforms

Harald Kühn1, #, Marion Murzek2, *

1 BOC Information Systems GmbH, Platform Development
Rabensteig 2, A-1010 Vienna, Austria

harald.kuehn@boc-eu.com

2 Women's Postgraduate College for Internet Technologies (WIT),
Vienna University of Technology, Austria

murzek@wit.tuwien.ac.at

Abstract. Metamodelling platforms are getting more and
more base technology, therefore interoperability of metamod-
elling platforms becomes a crucial aspect in managing corpo-
rations' knowledge assets. This paper describes a generic
metamodelling platform architecture and presents an over-
view of interoperability issues according to conceptual do-
mains in metamodelling platform architectures. Some of these
issues are illustrated by a case study from the insurance sec-
tor. The collection of interoperability issues can serve as a
starting point to stimulate further research on interoperability
problems in the metamodelling platform domain.

1 Introduction

Metamodelling platforms are software environments allowing the definition, usage
and maintenance of a method's elements: (a) metamodels describing problem-specific
modelling languages, (b) mechanisms & algorithms working on models and their
underlying metamodels, and (c) procedure models representing process descriptions
how to apply the metamodels and the corresponding mechanisms. Some of their func-
tional and non-functional requirements are multi-product ability, web-enablement,
multi-client ability, adaptability, and scalability [6].
Metamodelling approaches are an active research field since the past 15 years and
since then have found serious application areas in the software and information tech-

This work is partially supported by the Commission of the European Communities under the

sixth framework programme (INTEROP Network of Excellence, Contract N° 508011,
<http://www.interop-noe.org>).

* This research has been partly funded by the Austrian Federal Ministry for Education, Science,
and Culture, and the European Social Fund (ESF) under grant 31.963/46-VII/9/2002.

mailto:harald.kuehn@boc-eu.com
mailto:murzek@wit.tuwien.ac.at

nology industries. Some of them are Enterprise Model Integration (EMI) [9] in the
context of Enterprise Application Integration (EAI) [12], Model Integrated Comput-
ing (MIC) [11], domain specific modelling languages such as the Unified Modelling
Language (UML) [22] based on Meta Object Facility (MOF) [18], the Unified Enter-
prise Modelling Language [27], and model-driven development approaches such as
Model Driven Architecture (MDA) [19]. Additionally, metamodelling approaches
serve as valuable base technology to merge different modelling approaches into a
domain specific modelling language, e.g. integrating UML with simulation-oriented
modeling languages.
Since widespread industrial and research usage of metamodelling technology such as
ADONIS [1], MetaEdit+ [13], and METIS [14], the integration and interoperability
of metamodelling platforms is moving into focus of applied research and product-
quality implementations [16]. The goal of this paper is to provide an overview of
interoperability issues in the domain of metamodelling platforms. This overview can
serve as a starting point to stimulate further research on interoperability problems in
this domain.
The remainder of the paper is organized as follows: chapter 2 presents a generic
metamodelling platform architecture. Chapter 3 gives an overview of issues in meta-
modelling platform interoperability. These issues provide input for further research
areas in metamodelling platform interoperability. Chapter 4 presents a case study in
metamodelling platform interoperability. Related work is discussed in chapter 5.
Finally, chapter 6 summarizes the paper and gives an outlook to future work.

2. Metamodelling Platform Architecture

Figure 1 presents a generic architecture of metamodelling platforms [6, 8]. An impor-
tant element is the meta-metamodel (meta2 model). The meta2 model defines general
concepts available for method definition and method usage such as "metamodel",
"model type", "class", "relation", "attribute" etc. Semantic schemas are tightly cou-
pled with the meta2 model. They describe the semantics of each method element de-
fined by using the meta2 model. Semantic schemas can be described by using ap-
proaches such as ontology [5], semantic engines ("mechanisms") [6] etc.
The metamodel base contains metamodels of concrete modelling languages. Meta-
model editors are used for the definition and maintenance of metamodels. The meta-
model base is based on the meta2 model. The metamodel base forms the foundation of
the model base, in which all models are stored. Models can be created, changed and
visualized by using appropriate editors.
All mechanisms and algorithms used for evaluating and using models are stored in
the mechanism base. Mechanism editors are used for definition and maintenance of
mechanisms. The mechanism base is based on the meta2 model.
Procedure models describe the application of metamodels and mechanisms. They are
stored in the procedure model base. Procedure model editors are used for definition
and maintenance of procedure models. The procedure model base is based on the
meta2 model.

Persistency services support the durable storage of the various bases. These services
abstract from concrete storage techniques and permit storing of modelling informa-
tion in heterogeneous databases, file systems, web services etc.
Access services serve two main tasks. On the one hand they enable the open, bi-
directional exchange of all metamodelling information with other systems using a
message-oriented approach, i.e. APIs, or a data-oriented approach, i.e. files. On the
other hand they cover all aspects concerning security such as access rights, authoriza-
tion, en-/decryption etc.

Java

IDL

C++

...

XML

XMI

Proprietary
Formats

...

Persistency Service

DB1 DBn
...

A
P
I

F
I
L
E

...

Meta Meta Model

Model
Base

Procedure Model
Base

Mechanism
Base

Meta Model
Base

Procedure Model
Editor

Mechanism
Editor

Meta Model
Editor

Access service

Model
Editor

Repository

Method Workbench

Semantic
Schemas

Semantic
Schema Editor

Java

IDL

C++

...

Java

IDL

C++

...

XML

XMI

Proprietary
Formats

...

XML

XMI

Proprietary
Formats

...

Persistency Service

DB1 DBn
...

A
P
I

F
I
L
E

...

Meta Meta Model

Model
Base

Procedure Model
Base

Mechanism
Base

Meta Model
Base

Procedure Model
Editor

Mechanism
Editor

Meta Model
Editor

Access service

Model
Editor

Repository

Method WorkbenchMethod Workbench

Semantic
Schemas

Semantic
Schema Editor

Fig. 1. Generic Architecture of Metamodelling Platform

3. Interoperability Issues

OUSKEL AND SHETH identified two major categories of interoperability problems:
information heterogeneity and system heterogeneity [24]. In the context of metamod-
elling platforms, information heterogeneity maps to the modelling hierarchy of meta2
models, metamodels and models of each platform ("model heterogeneity"). System
heterogeneity maps to the diversity of available access services, mechanisms, persis-
tency services, and implementation technologies of each platform (see fig. 2). The
further description of interoperability issues in metamodelling platforms will be struc-
tured according to the conceptual domains of the generic metamodelling platform
architecture as described in fig. 1.

Model

Hierarchy

System

Metamodelling Platform A

Model
Hierarchy

System

Metamodelling Platform A

Model
Hierarchy

System

Metamodelling Platform B

Model
Hierarchy

System

Metamodelling Platform B

Model Heterogeneity

System Heterogeneity

Fig. 2. Model Heterogeneity and System Heterogeneity

3.1 Meta2 Model Domain

The meta2 model provides the basis for the other conceptual domains (see fig 1.).
Interoperability problems in this domain may arise in the syntax, semantics and ex-
pressiveness of underlying metamodelling languages to define, integrate and repre-
sent a method's elements [8], and appropriate transformation mechanisms for meta-
model transformation.
Some important aspects to be considered by metamodelling languages are:

• inheritance and meta-class features for metamodel definition.
• the expressive power and cardinality features of meta-relationships such as

aggregation (part-of), generalisation (is-a), pointer (link), and binary or n-ary
relationships.

• the amount of available meta-attributes to define concrete attributes of a cer-
tain type.

Some important aspects to be considered by metamodel transformation mechanisms
are:

• handling of different relationship concepts such as n-ary relationships, and
circular and recursive dependencies.

• nesting of elements and their handling in flattened structures during meta-
model transformation.

• uniqueness of element identification and the possibility of using model anno-
tations to store information in the target metamodel to avoid information loss
during transformation.

3.2 Metamodel Domain

Interoperability issues in the metamodel domain may occur in the definition, integra-
tion and representation of the syntax, semantics and notation of modelling languages.
Additionally, model transformation mechanisms for the horizontal and vertical model
transformation are aspects to be considered in interoperable metamodelling platforms.
Some important aspects to be considered on the metamodel level are:

• identification and consideration of syntactic and semantic mismatches
among modelling languages (same name – different concept, different name
– same concept etc.).

• identification and usage of domain-specific ontology to consider domain-
specific aspects and knowledge to establish metamodel interoperability.

• measurements for analysis and evaluation of modelling languages and their
underlying metamodels to identify interoperable and non-interoperable parts.

• definition of "hot spots" in participating metamodels to provide linking
points for metamodel integration.

3.3 Model Domain

Models correspond to their underlying metamodel. Therefore, the interoperability
problems on this level are influenced by the problems concerning metamodels (see
3.2). In addition interoperability issues have already been investigated thoroughly in
the realm of distributed database systems [28]. Based on these considerations some
additional aspects of Model Interoperability are:

• existence of non-corresponding model fragments, i.e., their metamodels are
partly not corresponding. This can result in information loss or in hidden in-
formation to avoid losing information in bidirectional model exchange.

• diversity of graphical representations and diversity of the underlying coordi-
nate system to place and arrange modelling objects. In worst case, models
cannot be understood after model exchange because of complete loss of
graphical information.

• models are input or provide parameters for mechanisms such as simulation,
analysis, reporting, and code generation. Even if models correspond to its
metamodel, it may occur that mechanisms cannot be used because of incom-
plete models.

• existence of appropriate domain ontology to support a proper model inter-
pretation in each platform.

• history logs to record model changes which can be necessary in model syn-
chronisation.

3.4 Mechanism Domain

Mechanisms provide possibilities to generate value added out of the different model
bases. Typical examples for mechanisms are version management, multi language
support, model analysis, and simulation.
Some important aspects to be considered in mechanism interoperability are:

• mechanisms can be implemented either on meta model level or meta2 model
level. Before exchanging mechanisms between metamodelling platforms, the
interdependencies of a mechanism to these both levels have to be analyzed.

• the technology used to implement a mechanism (scripting, programming lan-
guage, query language etc.) has strong influence on its interoperability. A
possible way to implement interoperable mechanisms is using standardized
interfaces, e.g. applying interface definition language (IDL) or wrapper tech-
nology.

3.5 Procedure Model Domain

Procedure models describe the processes how to apply modelling languages and
mechanisms to solve certain problem scenarios. This includes concepts such as
phases, milestones, responsibilities, work steps, results etc.
Important aspects to be considered in interoperability of procedure models are:

• the availability and mismatch of special procedure model fragments such as
contradictory work step descriptions.

• merging of procedure models into consolidated procedure descriptions.

3.6 Semantic Schema Domain

Semantic schemas describe the semantics of each method element. They are con-
nected either to elements of the model level, metamodel level or meta2 model level. A
semantic schema can be defined, e.g., by semantic engines ("script libraries") or by
using ontology.
Important aspects to be considered in interoperability of semantic schemas are:

• semantic similarity among semantic schemas and the measurement of the
similarity.

• mismatches of ontological constructs used in the semantic schemas.
• merging and integrating semantic schemas into a consolidated and shared

semantic schema.

3.7 Persistency Services Domain

Persistency services provide support for durable storage of the various bases. Some of
the relevant interoperability issues in this domain are:

• heterogeneous structures of underlying data sources such as relational
DBMS, object-oriented storage systems, XML-based databases, or file sys-
tems.

• different transaction systems which encumber an interoperable commit strat-
egy.

• heterogeneous user, user profiles and connect definitions to make consistent
data access difficult or even impossible (single sign-on).

3.8 Access Services Domain

Interoperability issues in this domain are mainly caused by system heterogeneity. It
can be separated into problems of direct (via API) or indirect (via files) exchange:
Direct exchange can be supported by metamodelling platform API. Some important
interoperability issues are:

• the involved providers must agree on necessary interfaces regarding their
programming languages, method signatures and in general about the secu-
rity handling and the access rights.

• Agreement on standardized "protocols" as suggested in [2] by using a gen-
eral "model bus" where each vendor could get attached by implementing one
of the provided protocols.

In indirect exchange the supported file formats play an important role such as XMI
[17], HUTN [20], XML, and proprietary formats:

• In case of proprietary formats a parser must be implemented to be able to in-
terpret the file syntax. Then rules must be defined to convert the semantic
content and the target file (format) must be generated.

• Standard formats and languages have the advantage that their syntax and
partly their semantics are given. Also standardized script languages, e. g.,
XSLT [30] or XQuery [29] for XML are provided.

4. Case Study

On the basis of an example from the financial services sector, namely the insurance
sector, interoperability issues of the metamodel and the access service domain are
demonstrated.
The example consists of three metamodels which are instances of the ADONIS [1]
meta2 model (quality management, business process management and ERP introduc-
tion metamodel). These and an additional metamodel of a fixed metamodelling plat-
form should be integrated into a new metamodel (fig. 3). In the following, the four
metamodels and their integration on the metamodel level and model level is de-
scribed.

QM
Metamodel

ADONIS® Meta2 Model

QM
Models

BPM
Models

ERP
Models

BPM
Metamodel

ERP
Metamodel

Models

Fixed
Metamodel

Integrated
Metamodel

Transformed
Models

Implicit
Meta2 model

QM
Metamodel

ADONIS® Meta2 Model

QM
Models

BPM
Models

ERP
Models

BPM
Metamodel

ERP
Metamodel

ModelsModels

Fixed
Metamodel

Integrated
Metamodel

Transformed
Models

Transformed
Models

Implicit
Meta2 model

Fig. 3. Integration and Interoperability of four Different Metamodels

The main part of the ERP metamodel (fig. 4 top right) consists of a process flow and
additional process objects. The process flow generalizes the components event, func-
tion and the logical operators. There are two types of functions: basic functions and
decomposition functions. Specializations of the additional objects are organizational
unit, information system, and information object.
The quality management metamodel (fig. 4 top left) contains four different model
types: process overview, business process model, organizational model and system
model. The differences of the type business process model and the process model in
the ERP metamodel are the missing class event and the missing operator XOR.
Therefore it contains additionally classes such as start and end. The process overview
contains processes which could refer to other processes or to business model proc-
esses. Additionally, a process could reference a document. The organizational model
consists of organisational units and actors which have a role and which could be ref-
erenced by an activity from the business process model. The system model contains
system components which could be connected via data flows. There are two types of

system components, systems and subsystems which could refer to another system
model. The systems are referenced by input/output information classes.
The business process metamodel is mainly contained in the quality management
model, which is described above. The ERP metamodel and the fixed metamodel are
very similar. Therefore and due to a lack of space only two of the four different
source metamodels are illustrated in fig. 4.
To ensure syntactical interoperability, in the target metamodel all of these concepts
must be integrated. To enable the transformation of the existing models from the old
platform to the new one the mapping of the classes between each source metamodel
and the new integrated metamodel must be defined.
Fig. 4 graphically illustrates the syntactical mapping between the metamodels. The
new integrated metamodel is shown at the bottom of fig. 4. It contains seven model
types, the same four as the quality management metamodel and additional three new
pool model types. The pool models summarize all documents, all roles and all process
owners. Due to the fact that the new system model does not provide the class subsys-
tem, the structure of the ERP models has to be flattened implying a loss of informa-
tion. Also for each ERP model a process start and an end must be newly created to
match the syntax of the integrated metamodel. The events in the ERP models have to
be eliminated and the logical operator XOR must be converted into a decision. More-
over, many classes have to be renamed, for example function in activity and decom-
position function in sub process as shown in fig. 4.
To physically transform the models to fit to the new integrated metamodel the inter-
operability problems concerning the access service domain must be solved. In our
case the models of three source metamodels are described with the same format, the
ADONIS XML format. The additional models of the fixed metamodel environment
are also described in XML but in a different structure. Thus, first the models which
are described differently must be converted into the structure of ADONIS XML for-
mat. This transformation could be done by the means of an XSLT script which does
this conversion. After that all model files exist in the same structure. Now a transfor-
mation tool is needed to automatically transform the models to fit to the new inte-
grated metamodel. For this purpose the BOC Model Transformer (BMT) [10, 15] has
been used. It is a tool that supports the transformation of models between different
modelling languages within ADONIS. Different kinds of navigations, rules, func-
tions, conditions and definitions make it possible to specify a rule file which contains
the semantical mappings for the transformation of the models between each source
metamodel and the new integrated metamodel. Furthermore the BMT supports the
creation of graphical information for new objects, for example the start and end
classes. Also the interdependencies within and between the models are preserved and
newly derived dependencies may be created automatically. After the transformation
of all models they comply to the integrated metamodel and could be imported into the
new metamodel which has been configured in ADONIS.

System-
57058

organizational
unit-56924

Process-
56910

Function-
56892

Activity

Flow
Object

DecisionEndStart

Subprocess

Task

successor information flow

Business
Process
Model

called process

Process referenced process

Process
Map referenced process

Actor

Role Organizational
unit

belongs to

is subordinated

has role

 Document

has subdocument

references

Join Split
Input

Information
Output

Information

has actor

Document
Model

produces output
gets input System

Organizational
Model

dataflow

System
Model

 referenced system

Responsible
person

Owner
Pool

Process
Owner

referenced owner

Role
Model

organizational
unit-56924

Process-
56910Process

Process
Overview

referenced process

Actor

Role Organizational
unit

belongs to

is subordinated

 has role

 Document

has subdocument

references
System

Components

Organizational
Model

System
Model

SubsystemSystem

referenced system

Decomposition
Function

Additional
Proces
Objects

Organizational
Unit

Information
System

Information
Object

Locigal
Operator

Basic
Function

Function

XOR OR

is assigned to

System-
57058

organizational
unit-56924

Process-
56910

Function-
56892

Activity

Flow
Object

DecisionEndStart

Subprocess

Task

successor information flow

Business
Process
Model

called process

Process referenced process

Process
Map referenced process

Actor

Role Organizational
unit

belongs to

is subordinated

has role

 Document

has subdocument

references

Join Split
Input

Information
Output

Information

has actor

Document
Model

produces output
gets input System

Organizational
Model

dataflow

System
Model

 referenced system

Responsible
person

Owner
Pool

Process
Owner

referenced owner

Role
Model

organizational
unit-56924

Process-
56910Process

Process
Overview

referenced process

Actor

Role Organizational
unit

belongs to

is subordinated

 has role

 Document

has subdocument

references
System

Components

Organizational
Model

System
Model

SubsystemSystem

referenced system

Decomposition
Function

Additional
Proces
Objects

Organizational
Unit

Information
System

Information
Object

Locigal
Operator

Basic
Function

Function

XOR OR

is assigned to

Fig. 4. Integration of Metamodels

5. Related Work

Due to the fact that this work provides an overview of existing problems regarding
interoperability issues in metamodelling platforms, the following related work con-
centrates on technology and approaches in the metamodelling domain.
ADONIS is a meta business process management tool [1]. It offers a three-step mod-
elling hierarchy with a rich meta2 model. Meta models can be customized as instances
of the meta2 model. Mechanisms such as "simulation" or "analysis" are defined on the
meta2 model level and can be redefined on the metamodel level. The scripting lan-
guage AdoScript provides mechanisms to define specific behaviour and functional-
ities.
MetaEdit+ offers also a three-step modelling hierarchy [13]. The meta2 model forms
the "GOPRR" model, offering the basic concepts "Graph", "Object", "Property",
"Relationship" and "Role". A diagram editor, object and graph browsers and property
dialogs support the definition of a new modelling language without hand coding.

Furthermore MetaEdit+ includes XML import and export, an API for data and control
access and a generic code generator.
The OMG´s Meta Object Facility (MOF) [18], the open source Eclipse Modelling
Framework (EMF) [26] and the Graphical Editor Framework (GEF) [25] are no
metamodelling platforms themselves. With the MOF the OMG created a meta2 model
standard, which provides a basis for defining modelling frameworks. UML [22] and
the Common Warehouse Metamodel (CWM) [21] are examples of instantiated meta
models of the MOF. Interoperability issues concerning the meta model and the model
domain are addressed by the ongoing standardisation of MOF
Query/Views/Transformations (QVT) [23] which should provide mechanisms for
mappings between models and meta models. The EMF which was influenced by the
MOF is a shared code base for public use. Together with the GEF it provides a possi-
bility to create a new modelling tool.
The main difference between metamodelling platforms such as MetaEdit+ and
ADONIS, and MOF or EMF is that metamodelling platforms provide the user a
graphical environment to create new meta models, whereas with MOF and EMF
everything must be coded.
It is easier and faster to build new meta models within metamodelling platforms, but
due to their implemented meta2 models the degree of freedom to create a specific
meta model is lower than in modelling frameworks like EMF [7].
In [4] E-MORF - a XSLT-based transformation tool - is introduced. E-MORF sup-
ports the conversion between MOF and EMF. The transformation is executed by
applying the XSLT to XMI which is supported by MOF and EMF. Beside the map-
ping concept where all fragments of both meta2 models are related also the mapping
problems for example "non-corresponding fragments" and "name mangling" are de-
scribed.
The XMF (eXecutable Metamodelling Facility) [3] created by Xactium is a meta-
modelling facility that fully supports language definition. At the heart of XMF is
XCore, the metamodel of XMF, which is comparable to the MOF model. To support
mappings between models two further languages are defined, namely XMap, which is
a unidirectional pattern based mapping language, and XSync, which is a bidirectional
synchronisation language.

6. Conclusion

Metamodelling platforms are getting more and more a kind of base technology [6].
Additionally, domain specific languages, model transformation approaches, and life-
cycle management within large model bases are active research issues. The interop-
erability of metamodelling platforms becomes a crucial aspect in managing corpora-
tions' knowledge assets. This paper presented an overview of interoperability issues
according to conceptual domains in metamodelling platform architectures. Some of
these aspects were illustrated by a case study from the insurance sector. The issues
overview can serve as a starting point to stimulate further research on interoperability
problems in the metamodelling platform domain.

Additionally to interoperability, we see three important trends in the area of meta-
modelling platforms in the near future:

• Metamodelling gets commodity: metamodelling provides suitable concepts
for flexible and interoperable solutions for modelling platforms. Further-
more, metamodelling concepts spread more and more into other domains,
such as MOF, UML 2.0, and product-line software development. We expect
that metamodelling will also get more attention in domains such as Work-
flow Management, IT Architecture Management, and Knowledge Manage-
ment. With this evolution in mind, challenging interoperability issues will
have to be solved.

• Integration of business-oriented and IT-oriented methodologies: we see
strong demands integrating approaches such as Strategy Management, Proc-
ess Management and IT Management into single, integrated methods. A
promising approach is MOF and MDA. Nevertheless, their focus currently
concentrates on system development. Upper-level models such as business
specifications and computation independent models (CIM) are not well rep-
resented until now. More research dealing with semantic transformations is
needed.

• Method Integration and Knowledge Management: our society is regarded as
"knowledge society". Methods represent experts knowledge, how to do and
process things in a certain way. As a future research domain we see the in-
vestigation of interdependencies of knowledge management and method en-
gineering and corresponding issues in integrating both.

References

1. ADONIS Homepage. www.boc-eu.com, access 30 November 2004.
2. X. Blanc, M. Gervais, P. Sriplakich: Model Bus: Towards the interoperability of modelling

 tools, Proceedings of Model-Driven Architecture: Foundations and Applications 2004,
 Linköping, Sweden.

3. T. Clark; A. Evans; P. Sammut; J. Willans: Applied Metamodelling – A Foundation for
 Language Driven Development, Version 0.1, Xactium, August 2004.

4. K. Duddy; A. Gerber; K. Raymond: Eclipse Modeling Framework (EMF) import/export
 from MOF / JMI, DSTC Technical Report, May 2003.

5. Gruber, T. R.: Toward principles for the design of ontologies used for knowledge sharing.
 In: Guarino, N.; Poli, R. (Eds.): Proceedings of the International Workshop of Formal On-
 tology, Padova, Italien, August 1993.

6. D. Karagiannis; H. Kühn: Metamodelling Platforms. Invited paper in: Bauknecht, K.; Tjoa,
A Min.; Quirchmayer, G. (eds.): Proceedings of the Third International Conference EC-
 Web 2002 - Dexa 2002, Aix-en-Provence, France, September 2-6, 2002, LNCS 2455,
 Springer-Verlag, Berlin, Heidelberg.

7. S. Kelly: Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM,
 http://www.softmetaware.com/oopsla2004/kelly.pdf, access 20 November 2004

8. H. Kühn: Methodenintegration im Business Engineering. PhD Thesis, University of Vienna,
 April 2004.

9. H. Kühn; F. Bayer; S. Junginger; D. Karagiannis: Enterprise Model Integration. In: Bauk-
 necht, K.; Tjoa, A M.; Quirchmayr, G. (Hrsg.): Proceedings of the 4th International Con-
 ference EC-Web 2003 - Dexa 2003, Prague, Czech Republic, September 2003, LNCS
 2738, Springer-Verlag, pp. 379-392.

10. H. Kühn; M. Murzek; F. Bayer: Horizontal Business Process Model Interoperability using
 Model Transformation. In: INTEREST’2004 Workshop at ECOOP 2004, Oslo, Norway,
 June 2004.

11. Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G.,
 Sprinkle J., Volgyesi P. The Generic Modeling Environment, Workshop on Intelligent Sig-
 nal Processing at WISP’2001, Budapest, Hungary, May 17, 2001.

12. Linthicum, D. S.: Enterprise Application Integration. Addison-Wesley, 2000.
13. MetaEdit+ Homepage. www.metacase.com, access 30 November 2004.
14. METIS Homepage. www.computas.com, access 30 November 2004.
15. M. Murzek: Methodenübergreifende Modelltransformationen am Beispiel von ADONIS.

 Diploma Thesis, University of Vienna, April 2004.
16. NoE INTEROP, Interoperability Research for Networked Enterprises Applications and

 Software, IST Network of Excellence, www.interop-noe.org, 2004.
17. Object Management Group: OMG XML Metadata Interchange (XMI) Specification, Ver-

 sion 1.2, January 2002. http://www.omg.org/cgi-bin/doc?formal/02-01-01.pdf, access 10
 November 2004.

18. Object Management Group: Meta Object Facility (MOF) Specification, Version 1.4, April
 2002. http://www.omg.org/cgi-bin/doc?formal/02-04-03.pdf, access 30 November 2004.

19. Object Management Group: MDA Guide, Version 1.0.1, 12. June 2003.
 http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf, access 30 November 2004.

20. Object Management Group: Human-Usable Textual Notation (HUTN) Specification, Final
 Adopted Specification December 2002, http://www.omg.org/docs/ptc/02-12-01.pdf, access
 30 November 2004.

21. Object Management Group: Common Warehouse Metamodel (CWM), OMG Specifica-
 tion/203-03-02, March 2003, http://www.omg.org/docs/formal/03-03-02.pdf, access 30
 November 2004.

22. Object Management Group: Unified Modeling Language Specification, OMG Specifica-
 tion/2003-09-01, September 2003, http://www.omg.org/docs/formal/03-03-01.pdf, access
 30 November 2004.

23. Object Management Group: Revised submission for MOF 2.0 Query/Views/ Transforma-
 tions RFP, OMG Specification/2003-08-18, August 2003, http://www.omg.org/docs/ad/03-
 08-08.pdf, access 30 November 2004.

24. A. M. Ouskel; A. Sheth: Semantic Interoperability in Global Information Systems. A brief
 Introduction to the Research Area and the Special Section, SIGMOD Record Vol. 28, No.
 1, March 1999.

25. The Graphical Editing Framework (GMF), http://www.eclipse.org/gef/.
26. The Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/.
27. UEML – Unified Enterprise Modelling Language, http://www.ueml.org, access 30 Novem-

 ber 2004.
28. P. Valduriez: Parallel Database Systems: Open Problems and New Issues, Distributed and

 Parallel Databases, April 1993
29. World Wide Web Consortium (W3C): XML Query (XQuery) Version 1.0, February 2005,

 http://www.w3c.org/XML/query/.
30. World Wide Web Consortium (W3C): XSL Transformations (XSLT) Version 2.0, February

 2005, http://www.w3.org/TR/xslt.

http://www.interop-noe.org/

