

Elke Michlmayr, Sabine Graf, Wolf Siberski, Wolfgang Nejdl **Query Routing with Ants**

Are ant algorithms suitable for query routing in unstructured peer-to-peer networks?

Elke Michlmayr,

Vienna University of

Women's Postgraduate College for Internet Technologies (WIT), Vienna University of Technology, http://wit.tuwien.ac.at

Foraging behaviour of natural ants

- Di Caro and Dorigo, 1999
- For solving graph-based optimization problems, or travelling salesman problem (TSP)
 - e.g. travelling salesman problem (TSP)
 - Small number of ants (e.g., 10)
 - Large number of iterations (e.g., 10000)
- Building blocks
 - Transition rule derives which link to follow based on amount of pheromone and link costs
 - Pheromone update rule defines which amount of pheromone to drop depending on goodness of solution
 - Evaporation rule defines the amount of pheromones evaporating in each iteration
- Many instances of ACO: Ant Colony System, Ant System, MAX-MIN Ant System, ...

- Routing of data packets in IP networks
- Most prominent: AntNet by Di Caro and Dorigo
 - Same building blocks, but no evaporation
 - Forward and backward ants
 - At regular intervals, each node N_s generates a forward ant F_{sd} that builds a path to a randomly chosen destination node N_d
 All nodes in the network must be known!
 - When the forward ant reaches N_d , it creates a backward ant B_{ds} that returns to N_s and updates all routing table entries for N_d
- Differences to query routing: Each packet has
 - Only one destination node
 - Destination is known in advance

Application scenario

TUU W I E R

- Distributed search engine
 - Each peer manages a repository of documents
- Taxonomy-based peer-to-peer network
 - All documents are classified by content according to a taxonomy, e.g., ACM Computing Classification System (ACM CCS)
 - Each peer owns a copy of the taxonomy
- Peers pose queries to the network
 - Queries consist of one or more keywords
 - Keywords are connected using Boolean operator AND
 - Set of allowed keywords is limited to the concepts of the taxonomy
 - A document D is an appropriate result for query Q if D is classified to be an instance of all concepts that are keywords of Q

Proposed algorithm SemAnt

- Neither ACO nor ACR are applicable as-is
 - We combine most appropriate features from both and
 - Adapt them to peer-to-peer environment
- Queries
 - Are represented as ants
- Multiple pheromone trails
 - One for each concept in the taxonomy
- Peers
 - Each peer P_i maintains pheromone trails in table τ
 - \circ One row for each neighbouring peer
 - One column for each keyword
 - P_i stores link costs in a table η
 - \circ One row for each neighbouring peer
 - Evaporation
 - \circ Each peer locally applies evaporation rule in predefined intervals

SemAnt: If a query is issued at peer P^Q...

- 1. Check P^Q's local document repository
- 2. Create forward ant with start time $T_{\rm Fstart}$ and maximum lifetime $T_{\rm max}$
- 3. Apply transition rule to select next peer P_i
- 4. Go to P_j and check document repository
- 5. If results are found, create backward ant B^{Q}
 - B^Q travels back hop-by-hop to P^Q
 - At each intermediate peer, B^Q
 - Updates link costs η_j
 - Drops pheromones by applying pheromone update rule
- 6. Add P_i to list of already visited peers
- 7. If $T_{Fstart} + T_{max}$ < CurrentTime: continue at 3 Else: terminate

SemAnt transition rule

- Defines routing strategy
 - Adopted from Ant Colony System
 - Two strategies: weight w_e decides which one to apply
- Exploiting strategy
 - Ants select the best link
 - Depending on amount of pheromones and link costs
 - Works best if paths are perfectly optimized
- Exploring strategy
 - Ants discover new paths
 - Adapted roulette wheel selection technique: for each P_j compute p_j and random value q ∈ [0, 1] to decide if ant should be cloned and sent to P_j

U	set of neighbouring peers
S(F ^Q)	peers already visited by F
η _u	link costs to neighbour P _u
τ _{cu}	pheromone trail to P _u for concept c
β	influence of link costs

$$j = \arg \max_{u \in U \land u \notin S(F^Q)} \left([\tau_{cu}] \cdot [\eta_u]^\beta \right)$$

$$p_j = \frac{[\tau_{cj}] \cdot [\eta_j]^{\beta}}{\sum_{u \in U \land u \notin S(F^Q)} ([\tau_{cu}] \cdot [\eta_u]^{\beta})}$$

SemAnt pheromone update rule

- Derives the amount of pheromone that must be dropped on a certain link
 - Adopted from Ant Colony System
- Amount of new pheromones Z depends on goodness of result
 - Number of documents found
 - Total link costs
- Z is derived by comparison to an (inexistent) optimal reference result
 - No problem, since always comparing to the same reference
- 50 % of Z are dropped to superconcept of c

D	documents found
d*	optimal number of docs
T _D	total link costs
T _{max}	maximum lifetime of forward ant
τ _{cj}	pheromone trail to P _j for concept c
W _d	influence of documents resp. link costs

$$au_{cj} \leftarrow au_{cj} + Z$$
, where

$$Z = w_d \cdot \frac{|D|}{d^*} + (1 - w_d) \cdot \frac{T_{max}}{2 \cdot T_D}$$

SemAnt

- Is an attempt to use ant algorithms in peer-to-peer networks
- Combines features from Ant Colony System and AntNet
- Optimizes trail for each keyword depending on its popularity
- Exploits the underlying taxonomy's knowledge by reflecting it in the pheromone trails
- Accounts for network parameters (latency)
- Work in progress
- Next step: Focus on dynamic aspects
 - Joining and leaving of peers
 - Newly added or deleted documents
 - Paper contains first ideas on that

References

- E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for Optimization from Social Insect Behaviour. Nature, 406:39-42, 2000.
- G. Di Caro and M. Dorigo. AntNet: Distributed Stigmergy Control for Communications Networks. Journal of Artificial Intelligence Research, 9:317-365, 1998.
- M. Dorigo and L. M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation, 1:53-66, 1997.
- M. Dorigo and G. D. Caro. New Ideas in Optimization, Chapter The Ant Colony Optimization Meta-Heuristic, pages 11-32. McGraw-Hill, 1999.
- M. Guntsch and M. Middendorf. Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP. In Applications of Evolutionary Computing, Lecture Notes in Computer Science, pages 213-222. Springer, 2001.
- O. Babaoglu, H. Meling, and A. Montresor. Anthill: A Framework for the Development of Agent-Based Peer-to-Peer Systems. In Proceedings of the 22nd International Conference on Distributed Computing Systems (ICDCS 02). IEEE, July 2002.

