Elke Michlmayr, Sabine Graf, Wolf Siberski, Wolfgang Nejdl

Query Routing with Ants
Are ant algorithms suitable for query routing in unstructured peer-to-peer networks?

Elke Michlmayr,
Women's Postgraduate College for Internet Technologies (WIT),
Vienna University of Technology,
http://wit.tuwien.ac.at
Foraging behaviour of natural ants

- **Trail-laying**
 - Ants drop pheromones

- **Trail-following**
 - Ants sense their environment for pheromones and use existing trails

- **Pheromones evaporate over time**

- **Ant algorithms**
 - Operate on graphs
 - Rely on local knowledge only!
Ant Colony Optimization (ACO)

- Di Caro and Dorigo, 1999
- For solving graph-based optimization problems, e.g. travelling salesman problem (TSP)
 - Small number of ants (e.g., 10)
 - Large number of iterations (e.g., 10000)
- Building blocks
 - **Transition rule** derives which link to follow based on amount of pheromone and link costs
 - **Pheromone update rule** defines which amount of pheromone to drop depending on goodness of solution
 - **Evaporation rule** defines the amount of pheromones evaporating in each iteration
- Many instances of ACO: *Ant Colony System*, Ant System, MAX-MIN Ant System, ...
Ant Colony Routing (ACR)

- Routing of data packets in IP networks
- Most prominent: **AntNet** by Di Caro and Dorigo
 - Same building blocks, but no evaporation
 - Forward and backward ants
 - At regular intervals, each node N_s generates a forward ant F_{sd} that builds a path to a randomly chosen destination node N_d
 - All nodes in the network must be known!
 - When the forward ant reaches N_d, it creates a backward ant B_{ds} that returns to N_s and updates all routing table entries for N_d
- Differences to query routing: Each packet has
 - Only one destination node
 - Destination is known in advance
Application scenario

- Distributed search engine
 - Each peer manages a repository of documents

- Taxonomy-based peer-to-peer network
 - All documents are classified by content according to a taxonomy, e.g., ACM Computing Classification System (ACM CCS)
 - Each peer owns a copy of the taxonomy

- Peers pose queries to the network
 - Queries consist of one or more keywords
 - Keywords are connected using Boolean operator AND
 - Set of allowed keywords is limited to the concepts of the taxonomy
 - A document D is an appropriate result for query Q if D is classified to be an instance of all concepts that are keywords of Q
Proposed algorithm SemAnt

- Neither ACO nor ACR are applicable as-is
 - We combine most appropriate features from both and
 - Adapt them to peer-to-peer environment
- Queries
 - Are represented as ants
- Multiple pheromone trails
 - One for each concept in the taxonomy
- Peers
 - Each peer P_i maintains pheromone trails in table τ
 - One row for each neighbouring peer
 - One column for each keyword
 - P_i stores link costs in a table η
 - One row for each neighbouring peer
 - Evaporation
 - Each peer locally applies evaporation rule in predefined intervals
SemAnt: If a query is issued at peer P_Q...

1. Check P_Q's local document repository
2. Create forward ant with start time T_{Fstart} and maximum lifetime T_{max}
3. Apply transition rule to select next peer P_j
4. Go to P_j and check document repository
5. If results are found, create backward ant B_Q
 - B_Q travels back hop-by-hop to P_Q
 - At each intermediate peer, B_Q
 - Updates link costs η_j
 - Drops pheromones by applying pheromone update rule
6. Add P_j to list of already visited peers
7. If $T_{Fstart} + T_{max} < \text{CurrentTime}$: continue at 3
 Else: terminate
SemAnt transition rule

- Defines routing strategy
 - Adopted from Ant Colony System
 - Two strategies: weight w_e decides which one to apply

- Exploiting strategy
 - Ants select the best link
 - Depending on amount of pheromones and link costs
 - Works best if paths are perfectly optimized

- Exploring strategy
 - Ants discover new paths
 - Adapted roulette wheel selection technique: for each P_j, compute p_j, and random value $q \in [0, 1]$ to decide if ant should be cloned and sent to P_j

$$j = \arg \max_{u \in U \land u \notin S(FQ)} \left([\tau_{cu}] \cdot [\eta_u]^\beta \right)$$

$$p_j = \frac{[\tau_{cj}] \cdot [\eta_j]^\beta}{\sum_{u \in U \land u \notin S(FQ)} ([\tau_{cu}] \cdot [\eta_u]^\beta)}$$

<table>
<thead>
<tr>
<th>U</th>
<th>set of neighbouring peers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(FQ)$</td>
<td>peers already visited by F</td>
</tr>
<tr>
<td>η_u</td>
<td>link costs to neighbour P_u</td>
</tr>
<tr>
<td>τ_{cu}</td>
<td>pheromone trail to P_u for concept c</td>
</tr>
<tr>
<td>β</td>
<td>influence of link costs</td>
</tr>
</tbody>
</table>
SemAnt pheromone update rule

- Derives the amount of pheromone that must be dropped on a certain link
 - Adopted from Ant Colony System
- Amount of new pheromones \(Z \) depends on goodness of result
 - Number of documents found
 - Total link costs
- \(Z \) is derived by comparison to an (inexistent) optimal reference result
 - No problem, since always comparing to the same reference
- 50 % of \(Z \) are dropped to superconcept of \(c \)

\[
\tau_{cj} \leftarrow \tau_{cj} + Z, \text{ where}
\]

\[
Z = w_d \cdot \frac{|D|}{d^*} + (1 - w_d) \cdot \frac{T_{\text{max}}}{2 \cdot T_D}
\]
Summary

- **SemAnt**
 - Is an attempt to use ant algorithms in peer-to-peer networks
 - Combines features from Ant Colony System and AntNet
 - Optimizes trail for each keyword depending on its popularity
 - Exploits the underlying taxonomy’s knowledge by reflecting it in the pheromone trails
 - Accounts for network parameters (latency)
 - Work in progress

- **Next step: Focus on dynamic aspects**
 - Joining and leaving of peers
 - Newly added or deleted documents
 - Paper contains first ideas on that
References