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ABSTRACT
Although the ant metaphor has been successfully applied to
routing of data packets both in wireless and fixed networks,
little is known yet about its appropriateness for search in
peer-to-peer environments. This paper presents SemAnt, a
distributed content-based routing algorithm based on the
Ant Colony Optimization meta-heuristic and adapted for
deployment in peer-to-peer networks. Under the assump-
tion that content is annotated according to a taxonomy, it is
possible to determine the hierarchical relationships between
queries, and to exploit this information to improve the rout-
ing process. Our results show that using taxonomies en-
hances search performance in peer-to-peer networks. The
degree of enhancement is highly dependent on the content
distribution in the network.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing Protocols; H.3.4 [Information Stor-
age and Retrieval]: Systems and Software—Information
networks; I.2.8 [Artificial Intelligence]: Problem solving,
control methods and search backtracking—Heuristics

General Terms
Algorithms, Design, Experimentation

Keywords
Taxonomies, Metadata, Peer-to-Peer, Self-Organization, Ant
Colony Optimization, Distributed Agents

1. INTRODUCTION
As advances in the research areas of information retrieval

and search engines have shown, providing full-text search
within centralized environments is feasible and shows good
performance. On the contrary, full-text search in distributed
environments is still a vision. A good overview of the state
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of the art in full-text search in peer-to-peer networks is pro-
vided by Zhong et al. [29]. The core of this research area is
the design of full-text indexes for the resources of each peer,
while the routing schemes used are usually quite simple.

The complement of distributed full-text search is distri-
buted key lookup, where indexing is avoided by assigning
an unique key to every resource and by providing lookup
by key only using distributed hashtables [6]. The essence
of this line of research lies in the design of sophisticated
routing schemes that allow for efficient lookup of keys. As
shown in [20], distributed hashtables can provide the basis
for distributed full-text search.

Metadata-based search is the compromise between full-
text search and key lookup. If the metadata the resources
are annotated with are taken into account instead of their ac-
tual content, indexing a peer’s content is simple. Hence, the
major effort in this field is devoted to the design of sophisti-
cated routing schemes that allow for keyword-based search.
Most of the approaches for content-based or semantic rout-
ing fall in this category, since the main problem all content-
based approaches have to face is the necessity to consider
every query that can occur in the network, and to treat it
based on its syntax and semantics. Thus, it is desirable to
have a finite number of possible queries and it would be
even better to know about the relationships between query
keywords in order to simplify routing tables. The relation-
ships between concepts/keywords can be defined with on-
tologies and/or taxonomies. In this paper, we investigate
how and to which extent taxonomies can be applied for im-
proving content-based routing. The investigation is carried
out within the frame of our current work [22, 21] on apply-
ing ant algorithms to content-based search in peer-to-peer
networks.

Contributions. The contribution of this paper is twofold.
First, we show how to extend SemAnt – an ant algorithm
for content-based search in peer-to-peer networks – in order
to allow for integration of information from a taxonomy for
routing. Second, we present experimental results indicating
the performance of the algorithm in different application
scenarios, with or without using information from a taxon-
omy for routing. In addition, we deliver an in-depth study
of the impacts of different content distributions on the per-
formance of the algorithm.

Paper overview. Section 2 provides a review of related
work. Section 3 specifies SemAnt, the proposed ant algo-
rithm. The experimental results are presented in Section 4.



2. RELATED WORK
The work related to our approach can be grouped into

three areas. In Section 2.1 we give an overview of approaches
based on exploitation of query patterns occurring in the net-
work. In Section 2.2 we provide a survey on how and for
which purposes taxonomies have been used so far in peer-
to-peer networks. Section 2.3 discusses previous attempts to
apply self-organized behavior to peer-to-peer environments.

2.1 Query-pattern-based approaches
The most basic approaches to query routing in unstruc-

tured peer-to-peer networks are simple broadcasting tech-
niques. Sophisticated methods exploit locally indexed infor-
mation about user queries in the past, in order to predict
which node is capable of answering a given query based on
its keywords. Joseph and Hoshiai coin the term reputation
learning for these techniques [15].

The basic premise behind reputation learning, which was
first published by Cohen et al. [9], is that peers that would
have been able to satisfy previous queries are more likely
candidates to answer a current query which is similar. An-
other premise is that peers which share certain resources are
more likely to be able to answer each other’s queries because
they have at least one common interest.

Sripanidkulchai et al. [26] use these premises to create
shortcut links between peers with similar interests. Queries
are then sent to the shortcut peers first. Only if there is no
result, the query is flooded to the overlay network.

Cohen et al. [9] criticize that shortcuts focus on the first
hop of query propagation only, and suggest that all peers
which share a certain resources should form a so-called pos-
session-rule sub-overlay. Each peer is a member of multiple
overlays, and if it issues a query, the query is sent to one
randomly selected overlay the peer is a member of.

Cholvi et al.’s [8] concept of acquaintance links uses query
patterns occurring in the network to dynamically adapt the
topology of the overlay network in order to create commu-
nities of peers that share similar interests in a self-organized
manner. It turns out that the peers tend to organize into
a super-peer structure [28], where powerful peers that have
a big amount of resources at their disposal are better con-
nected than less powerful peers.

Our approach is based on the exploitation of query pat-
terns in the past as well, but does neither rely on shortcuts
nor on topology adaption. Instead, we build a probabilistic
overlay network for each query that occurs in the network.
The approach that resembles our work most closely is the
InfoBeacons system by Cooper [10], which is a middleware
system designed for connecting uncooperative Web infor-
mation sources by so-called beacons. Each beacon manages
a small number of information sources and is in charge of
sending user queries to appropriate sources. All query re-
sults are cached at the beacon as a set of pairs (Wi, CW s

i ),
where Wi is a keyword and CW s

i is the count of this word at
source s. These statistics about past queries are exploited
by the ProbResults ranking function to direct future queries
to appropriate sources: For a query Q comprised of a set
of n keywords, the function is computed as the product ofQn

i=1 CW s
i /ks, where ks is the number of queries previously

sent to s. In addition, a heuristic called experience weighting
provides for adaptation of cached information to changes at
information sources. Although the beacons are very efficient
in managing the information sources they are responsible

for, the main drawback of this approach is that the beacons
themselves do not cooperate. If a query can not be satisfied
with the resources that are managed by one beacon, it is
simply forwarded to another beacon without any attempts
to make an intelligent guess which beacon is most likely to
contain an answer.

2.2 Taxonomy- or ontology-based approaches
The main advantage of using taxonomies or ontologies for

routing by content is that they provide a way to extract the
relationship between different resources or queries and hence
allow to define similarity measures. We can distinguish be-
tween approaches that require a summary of a peer’s ex-
pertise in order to classify the peer, and more fine-grained
approaches that rely on the classification of the peer’s re-
sources rather than on summaries.

In the first category, Crespo and Garcia-Molina [12] were
the first to propose that the expertise of a certain peer
should be classified according to a taxonomy, and that peers
storing similar contents should be clustered into semantic
overlay networks. Some others based their work on this idea,
e.g., Löser [17], who investigated how a super-peer architec-
ture and a distributed hashtable can be combined to create
a distributed catalog of peer descriptions, or Schmitz [25],
whose work deals with a network in which each peer is char-
acterized by one concept or instance from a certain ontology
and shows how the peers can organize themselves into a net-
work structure that resembles the structure of the ontology.

The most notable piece of work in the second category
is that of Tempich et al. [27] which was later refined and
extended in [18]. Both of their approaches, namely INGA
and REMINDIN’, are based on shortcut creation and bor-
row ideas from social networks to rank peers based on the
information about queries in the past according to their like-
lihood to be able to answer a certain query and to select the
best ranked node for each query. The shortcuts are stored
in local indices. The size of a local index is limited and a
combination of replacement strategies is used to keep the
most useful shortcuts while removing the less valuable ones.

Pirredu and Nascimento [23] describe a peer-to-peer sys-
tem in which all available content is annotated according
to a balanced taxonomy. In a balanced taxonomy, all leaf
concepts can be found at the same level of hierarchy. The
peers (1) broadcast information about their contents and
(2) manage a local index that stores aggregated information
about the contents of its n-hops-neighborhood – where n is
the height of the taxonomy – in different granularities de-
pending on how many hops the peer is away. This approach
is similar to hop-count routing indices as proposed by Cre-
spo and Garcia-Molina [11]. Based on these indices, queries
can be routed effectively.

2.3 Emergent behavior and peer-to-peer net-
works

The most comprehensive source of information about the
applicability of biological processes to distributed environ-
ments is provided by Babaoglu et al. in [4], including a dis-
cussion of ant-based methods in context and an attempt to
apply the biological process of proliferation to search in un-
structured overlay networks.

An abstract formulation of the basic ideas behind emer-
gent behavior and self-organization can be found in emer-
gent semantics by Aberer et al. [2], a well-known theoreti-



cal framework for semantic interoperability between loosely
coupled information sources. They suggest to use a semantic
handshake protocol to allow for negotiations between pairs
of peers to reach an agreement over the meaning of mod-
els, e.g., by local schema mapping [1]. Similar to the ant
metaphor, (1) negotiations are local interactions whenever
possible, (2) global agreements are obtained by aggregating
local agreements, and (3) the negotiations are influenced by
the context of the existing global agreements.

The most well-known practical approach is the Anthill [5]
framework for the design, implementation, and evaluation
of ant algorithms in peer-to-peer networks. Although – for
demonstration purposes – Anthill was used to build a file-
sharing application called Gnutant, the projects focuses on
the development of the framework and does not design al-
gorithms. This task is left to the users of the framework.

The open-source project MUTE [24] implements a peer-
to-peer system that relies on the ant metaphor for user dis-
covery. Ants are used to track which neighbor connections
are associated with particular sender addresses. Distributed
search is based on controlled flooding to locate files by name
based on free-form query strings.

3. ALGORITHM
In this section we describe the SemAnt algorithm. While

Section 3.1 describes the building blocks of distributed ant
algorithms, Section 3.2 shows how to adapt them to peer-
to-peer environments. Section 3.3 explains how taxonomies
are used for content-based routing. Section 3.4 specifies the
SemAnt routing procedure. Section 3.5 points out how the
pheromone trails are updated when documents are found.
Section 3.6 explains how the evaporation feature is used.

3.1 Distributed ant-based methods
Ant algorithms are inspired by the collective foraging be-

havior of specific ant species which use a chemical substance
called pheromone for communication. Since pheromone-
based communication is indirect, there is no need for global
knowledge about the network. This qualifies ants algorithms
for application in peer-to-peer networks.

Although the primary application area for Ant Colony
Optimization is in solving graph-based optimization prob-
lems in a centralized manner, a considerable amount of work
has been devoted to solving distributed problems with the
ant metaphor. The most prominent distributed ant algo-
rithm, AntNet [7] by Di Caro and Dorigo, is designed for
routing of data packets in IP networks. In the following
we provide an introduction to the basic principles of Ant-
Net. Consider a directed weighted graph having N nodes.
The edges of the graph are the links between nodes and are
viewed as bit pipes with a certain cost (bandwidth and trans-
mission delay) that depends on the current load of this link.
Each node manages a routing table that stores information
about the outgoing links and their amount of pheromone.
The routing tables are matrices of size N × l, where N is
the number of nodes in the network and l is the number of
outgoing links. The routing tables entries for all reachable
nodes are initialized with equal values. At regular intervals,
each node PS generates a so-called forward ant (see Figure 1)
that builds a path to a randomly selected destination node
PD by applying a so-called transition rule at each node. The
transition rule decides which outgoing link is to follow based
on link costs and pheromone amounts. The better the link

PS

PD

Forward ant

Backward ant

Figure 1: Forward and backward ants

in terms of low link costs and a high amount of pheromone,
the higher the probability that it will be selected. When
a forward ant has reached its destination node, it calcu-
lates the total link costs of the path it used. The lower the
total link cost, the more additional amount of pheromone
should be dropped to the path. Since each node stores rout-
ing information locally, the forward ant cannot update the
pheromone trails directly. Instead, it generates a backward
ant that returns to the source node through the same path
that was used by the forward ant. The backward ant is
responsible for updating the pheromone trail (see dotted ar-
rows in Figure 1) according to the information gathered by
the forward ant by altering the routing table of each visited
node. The backward ant updates only those entries that re-
fer to the destination node. Subsequent forward ants make
their routing decisions based on the altered values.

AntNet includes a strategy for preventing cycles. Each
forward ant manages a stack of nodes already visited. Each
time it has to decide which node to visit next, it excludes
all already visited nodes. If it detects a cycle because it is
forced to go to an already visited node Nv since all possible
next nodes were already visited, it calculates the time span t
it spent inside the circle. If t is greater than 50% of the
ant’s total lifetime, it is terminated. Otherwise, the ant
removes all nodes that are part of the cycle from its stack
and continues traveling at node Nv.

3.2 Adapting the ant metaphor to peer-to-peer
networks

The application scenario for the SemAnt algorithm is that
of a distributed search engine where each peer manages a
repository of documents, offers its content to the other peers,
and issues queries to the network. For these purposes, we
adopt (1) AntNet ’s concept of supporting distributed prob-
lems with forward ants and backward ants and (2) its strat-
egy for preventing cycles. The difference is that – instead of
sending out forward ants at regular intervals – we create a
forward ant for each query that occurs in the network. This
ant is responsible for answering the query. Figure 2 shows
the SemAnt algorithm in pseudo-code. If a forward ant ar-
rives at a peer that stores documents satisfying the query,
it creates a backward ant and terminates its travel. In ad-
dition, we define a time-to-live (TTL) parameter Tmax to
prevent forward ants from running infinitely. Consequently,
if a backward ant was created, it will arrive at the querying
peer within a time interval of 2 ∗ Tmax. If it does not, then
there is no result for the query.

In a previous version of the algorithm [22], we used a dif-
ferent approach where an ant always used its maximum TTL



1 # In i t i a l i z a t i o n
2 t = CurrentTime ;
3 t end = EndTimeOfSimulation ;
4

5 # Concurrent a c t i v i t y
6 foreach (Node ) {
7 i n i t i a l i z ePhe romoneTab l e s ( ) ;
8 while ( t <= t end ) {
9

10 # Concurrent a c t i v i t y at each node
11 i n p a r a l l e l {
12 i f (Query Q) {
13 checkLocalDocumentRepository ( ) ;
14 i f (DocumentsFound == 0) {
15 createForwardAnt ( query parameter ) ;
16 }
17 }
18

19 foreach ( ForwardAnt ) {
20 while ( Timeout not reached ) {
21 applyTrans i t ionRule ( ) ;
22 foreach ( ForwardAnt ) {
23 GoToNode( N j ) ;
24 checkLocalDocumentRepository ( ) ;
25 i f (DocumentsFound > 0) {
26 createBackwardAnt ( Stack , N j ) ;
27 terminate ( ) ;
28 }
29 addDataToStack ( N j ) ;
30 }
31 }
32 }
33

34 foreach (BackwardAnt ) {
35 do {
36 node = popStack Node ( ) ;
37 GoToNode( node ) ;
38 applyPheromoneTrailUpdateRule ( ) ;
39 } while ( node <> source node ) ;
40 }
41

42 foreach ( Pe r i od i ca lT ime In t e rva l t e ) {
43 applyEvaporationRule ( ) ;
44 }
45 }
46 }
47 }

Figure 2: SemAnt algorithm in pseudo-code

and continued its search after finding the first result node.
The assumption behind this approach was that if forward
ants are allowed to go on after the first result node, they
can find other result nodes and generate multiple backward
ants. Actually, our experiments showed that ants tend to
stay in the neighborhood of the node they already found,
since the pheromone trails indicate that there is an appro-
priate node nearby. For this reason, letting ants go on after
they found the first result does not enhance performance.

3.3 Taxonomies for routing by content
Unlike in routing of data packets, where the destination

node is known and the content of the packets is irrelevant, in
query routing it is essential to consider the content of a query
– its syntax and semantics – to find an appropriate desti-
nation node. Similar to the data structures in AntNet, we
employ a two-dimensional data structure for routing tables,
but for our purposes each row of the matrix corresponds to
a certain query that can occur in the network, rather than
corresponding to a specific destination node.

We rely on taxonomies for restricting the maximum size of
the routing tables. We assume that the contents of the doc-

ument repositories are annotated according to the concepts
of a taxonomy. Each document can be an instance of one or
more concepts. Query keywords are restricted to the con-
cepts of a taxonomy as well. For simplicity, we assume that
a query Q consists of just one concept c. A document is an
appropriate result for a given query Q if it is an instance of
concept c. Supporting queries with multiple keywords would
be possible by building average values of the corresponding
pheromone amounts.

At each peer Pi, pheromone trails are maintained in a ta-
ble τ of size C×n, where C is the number of concepts in the
taxonomy and n is the number of peer Pi’s outgoing links to
neighbor peers. Each τcu stores the amount of pheromone
corresponding to concept c dropped at the link from peer Pi

to peer Pnu , for each concept c and each neighbor peer Pnu .
At startup, all table entries are initialized with the same
value τinit = 0.009. Initialization with a small value pre-
vents divisions by zero and is necessary for the evaporation
feature (see Section 3.6).

3.4 Routing strategies
An ant algorithm’s routing strategy is defined by its tran-

sition rule. The transition rule used in the SemAnt algo-
rithm is an adapted version of one used in Ant Colony Sys-
tem [13]. It consists of two strategies that complement each
other. Based on probability ws ∈ [0, 1] and a random value
q ∈ [0, 1] that is calculated each time a forward ant has to
select an outgoing link, either an exploiting strategy (see
Section 3.4.1) or an exploring strategy (see Section 3.4.2)
is applied. While the exploiting strategy weighted with ws

solely utilizes the results gained so far, the exploring strategy
weighted with 1 − ws provides for mutability and random-
ness. Obviously, more weight should be put on the exploit-
ing strategy, i.e., ws ∈ [0.5, 1].

3.4.1 Exploiting strategy
The exploiting strategy selects the link to the neighbor

peer Pj with the highest quality. To measure the usefulness
of the underlying taxonomical information for routing, we
use two different variants of this strategy.

In the first variant, which is shown in (1a), we consider
the hierarchical structure of the pheromone trails. The strat-
egy incorporates not only the pheromone trail for concept c,
which is the keyword of query Q, but also those trails that
correspond to the super-concepts of concept c. To put more
emphasis on the trails that directly match the query, a mul-
tiplication factor is used.

j = arg maxu∈U∧u/∈S(F Q)

 
n−1X
i=0

τciu ·
1

xi

!
(1a)

In (1a), U is the set of neighbor peers of Pi, and S(F Q)
is the set of peers already visited by forward ant F Q, i is
the distance between the super-concept ci and concept c,
c0 = c, n is the distance between concept c and the top-
level concept, and x ∈ [2, 4, 8, 16, ...]. Parameter n defines
how many superconcepts are considered and parameter x to
which extent they are incorporated. Appropriate values for
n and x must be found out in the experiments.

In the second variant, we treat all pheromone trails for dif-
ferent concepts as being independent from each other. The
ants simply select the link that stores the highest amount of
pheromone for the given keyword as shown in (1b).



j = arg maxu∈U∧u/∈S(F Q)τcu (1b)

In (1b), U is the set of neighbor peers of Pi, and S(F Q) is
the set of peers already visited by F Q.

3.4.2 Exploring strategy
The exploring strategy encourages the forward ants to dis-

cover new paths by taking not only the best but all neighbors
into account. It consists of two steps. The first step, which
is shown in (2), is to derive a goodness value pj for each
neighbor peer Pj not already visited.

pj =
τcjP

u∈U∧u/∈S(F Q) τcu
(2)

where the sum of all goodness values
P

pj = 1, U is the
set of neighbor peers of Pi, and S(F Q) is the set of peers
already visited by F Q.

In the second step, which is shown in (3), an adapted ver-
sion of the roulette wheel selection technique [14] is applied
for selecting peers: Each pj is separately placed on the con-
tinuum between 0 and 1, and for each pj a random value q is
calculated for deciding whether Pj should be selected. This
strategy allows more than one peer to be selected to account
for the fact that there are multiple possible destination peers
which contain answers for a query.

GOTOj =

�
1 if q ≤ pj ∧ j ∈ U ∧ j /∈ S(F Q)
0 else

(3)

where q is a random value and q ∈ [0, 1]. If GOTOj = 1,
the forward ant sends a clone of itself to peer Pj .

To ensure that at least one peer will be selected, the al-
gorithm falls back to the exploiting strategy if applying the
exploring strategy would result in not selecting any peer.

Since we allow ants to duplicate themselves, it can hap-
pen that two ants representing the same query sequentially
arrive at the same peer. Each peer keeps track of which ants
it was already visited by, and terminates duplicated ants.

3.5 Pheromone updates
If a forward ant arrives at a certain peer P D storing ap-

propriate result documents D, it generates a backward ant
and supplies it with D and with a copy of the stack that
contains all visited peers S(F Q). After generating the back-
ward ant, the forward ant terminates. The backward ant
calculates the sum of all entries in S(F Q) to get the total
number of hops TD for the path from the querying peer P Q

to peer P D, and travels back hop-by-hop according to the
information stored in S(F Q) until it arrives at peer P Q. If
this is not possible because of a topology change, the back-
ward ant terminates and the result will not be transported
to the querying peer.

At each intermediate peer, the backward ant drops phero-
mone on the link previously selected by the forward ant.
The amount of pheromone depends on the goodness of the
path. The goodness is determined by comparing the number
of documents found and the length of the path to optimal
values. The pheromone update rule is adopted from [13]
and defined as shown in (4), (5), and (6). As shown in (4)
and (5), equal amounts of pheromone are dropped on the
pheromone trail for concept c – which is the keyword of

query Q – and on the pheromone trails corresponding to
the super-concepts ci of concept c.

τcij ← τcij + Z, (4)

where

i = {0, . . . , n− 1}, c0 = c (5)

and

Z = wd ·
|D|
Dopt

+ (1− wd) · Tmax

2 · TD
(6)

As shown in (6), the values for the optimal solution are set to
1
2
·Tmax for the path length and Dopt for the number of doc-

uments. Parameter wd weights the influence of document
quantities and path lengths.

3.6 Evaporation
The evaporation feature, after taking pheromone amounts

into account for the routing strategy and updating them ac-
cording to the goodness of result paths, is the third con-
stituent of pheromone management in ant algorithms. To
avoid unlimited increments in pheromone amount, a cer-
tain percentage of pheromone vanishes over time. In addi-
tion, evaporation prevents that paths become too dominant:
Since the pheromone amount is lowered by multiplication
of the current value with a constant, evaporation removes
more pheromone from trails that store a high amount than
of those that store a low amount.

τcu ← (1− ρ) · τcu (7)

In SemAnt, each peer applies the evaporation rule shown
in (7) in a predefined interval te for each link to neighbor
peer Pu and each concept c. The amount of pheromone
that evaporates in every interval is controlled by parameter
ρ ∈ [0, 1].

4. SIMULATION AND RESULTS
In this section we present the setup and the results of the

experimental evaluation of using taxonomies in combination
with the SemAnt algorithm. We focus on comparing the per-
formance of the algorithm with regard to different content
distributions, and evaluate the impact of using taxonomical
relationships between keywords for routing. Section 4.1 de-
picts the metrics and the parameter values that were used.
Section 4.2 describes the simulation setup and shows the
results.

4.1 Metrics and parameter settings
We have already shown in [21] that SemAnt exhibits good

performance in comparison to standard approaches, i.e., the
k-random walker algorithm [19]. In this paper, we focus on
evaluating the performance of the algorithm in two differ-
ent settings, and on determining the discrepancy between
considering taxonomical relationships between concepts (cf.
Equation (1a) in Section 3.4.1) and treating concepts as un-
related keywords (cf. Equation (1b) in Section 3.4.1) for
each of these settings. Initial experiments were performed
to determine parameter n, which is the optimal number of
superconcepts that should be taken into account for rout-
ing. It turned out that the best value is to set n = 2. This
means that only the direct superconcept is specific enough



for improving performance. If higher-level superconcepts
are taken into account as well, performance is actually low-
ered. The metrics used for performance evaluation are the
following:

• Resource usage is defined as the number of links trav-
eled for each query within a given period of time.

• Hit rate is defined as the number of documents found
for each query within a given period of time.

• Efficiency is the ratio of resource usage to hit rate. If
we divide the number of links traveled by the num-
ber of documents found, we get the average number of
links traveled to find one document, which is the most
practical metric.

Table 1 shows the values chosen for the input parameters of
SemAnt. To make comparisons possible, we use the same
parameter values for all different content distributions. As
we also found out in our initial experiments, resource usage
is highly dependent on weight ws. This parameter defines
the ratio between ants using the exploring and ants using
the exploiting strategy. The more ants employ the exploring
strategy, the more traffic occurs in the network, but not nec-
essarily leading to proportionally better hit rates. The best
trade-off between resource usage and hit rate is obtained
when setting parameter ws = 0.85.

4.2 Setup and experimental results
We simulate a peer-to-peer network with 1024 peers. A

static network topology and document distribution is as-
sumed. The system supports cooperation between computer
scientists by sharing documents. In order to choose a real-
istic model for social networks, a small world network [16]
with a clustering coefficient of 2 is used. Similar to [23], we
model the content with the ACM Computing Classification
System [3] taxonomy. Each document is an instance of a
certain leaf concept. In total, ACM CCS contains 910 leaf
concepts. To represent each research topic equally, we create
the same number of documents for each leaf concept. We
create 34 documents per concept and thus get 30940 docu-
ments in total. For uniform distribution of queries within
the network, a ticker clock at each peer is used. The prob-
ability that a peer issues a query within one time unit is
set to 0.1. The keyword of the query consists of a randomly
selected leaf concept from the ACM CCS taxonomy. For dis-
tributing the documents across the network, we adopt the
assumption that each peer is an expert on a certain topic
and therefore a certain percentage Pexpert of its documents
are instances of one particular research area. A research

ρ evaporation factor 0.07
Tmax timeout of forward ants 25
ws weight of exploiting and exploring

strategy
0.85

Dopt optimal number of documents 10
wd weight of document quantity and

path length
0.5

n number of superconcept pheromone
trails incorporated (including con-
cept itself)

2

Table 1: Parameters of SemAnt

A B C ...

1 2

1 2 ...

Research area

Figure 3: Third-level concepts and their leaf con-
cepts model research areas

area is modeled by the third-level concepts of the taxonomy
and their leaf concepts, as shown in Figure 3.

If Pexpert = 100%, all the documents stored at a certain
peer belong to the same research area. If Pexpert < 100%,
those documents that are not stored at an expert peer are
randomly and individually spread in the network. Conse-
quently, in case of Pexpert = 0% all documents are spread
randomly across the network.

Scenario 1 In the first scenario, we set Pexpert = 100%
and compare the effects different numbers of experts have on
the overall performance. In the first case, there are 6 experts
per research area in the network, while in the second case,
there are 12 experts. Figure 4 shows the results for the hit
rate in scenario 1, Figure 5 those for the resource usage,
and Figure 6 the combined measure of efficiency. Because
of Pexpert = 100%, the corresponding superconcept has the
same significance for a query as the concept itself. Thus, it
is irrelevant to which extend superconcepts are considered,
that is, which value is used for parameter x. The figures
show the results for setting x = 4.

What can be seen is that the results are the better the
less experts exist. For 6 experts, the hit rate is about 5.5
documents. For 12 experts, it is about 3 documents. This is
obvious, since the more experts exist, the less documents are
stored at one expert peer. As soon as the converged phase
is reached, the results for the hit rate (Figure 4) are nearly
the same, no matter whether the superconcept is considered
or not. The discrepancy is that the algorithm converges
faster if the superconcept trails are included, and that the
performance gain is higher in case of more experts.

As shown in Figure 5, the values for resource usage are
proportionally lower if superconcept trails are included. The
difference is rather small (approx. 3 messages in both cases),
but permanent, because it is still present after 5000 time
units. The resources used by the backward ants are included
in these figures. This is the reason why the resource usage
is higher in case of 6 experts, because more documents are
found and thus more backward ants are created.

To summarize, the algorithm is very efficient in all four
settings (Figure 6) where Pexpert = 100%. Using the super-
concept trails for routing gives nearly the same results as
not using them, but it additionally lowers the time it takes
to reach the converged phase (approx. 500 time units when
using superconcepts, approx. 1000 time units without).

Scenario 2 In the scenario described above, all docu-
ments were stored at expert peers. This is the optimal set-
ting for using superconcepts for routing. In this scenario, we
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want to investigate the effects that dispersed document dis-
tributions have on the performance. We acquire the results
for Pexpert = [0%, 20%, 40%, 60%, 80%, 100%] and compare
them. Figure 7 shows the values for efficiency when relying
on the pheromone trails for concepts only. As expected, the
algorithms’ performance is the weaker, the more disperse
the document distribution is. This is a problem that every
content-based approach has to face.

Figure 8 shows the results when the pheromone trails for
superconcepts are considered. We use x = 4 for all simula-
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Figure 7: Scenario 2, not using superconcepts

tions to ease comparison. It turns out that using supercon-
cept pheromone trails for routing has a positive impact on
performance as long as at least some patterns can be found
in the document distribution. Solely in case of Pexpert = 0%,
where all documents are individually stored at randomly
chosen peers, considering the superconcept lowers perfor-
mance. The most significant improvement can be found in
case of Pexpert = 60%, where the efficiency value is 39.5%
better after 5000 time units. Second best is Pexpert = 80%,
where improvement is 38,2%. For Pexpert = 40%, it is
still significant with 30,6%. The improvement for Pexpert =
100% is 13,5%, and 7,2% for Pexpert = 20%. Note that the
lower the value for Pexpert, the longer it takes until a con-
verged phase is reached. Hence, for Pexpert = 20%, not con-
sidering superconcepts outperforms considering them until
time unit 2500 is reached.

5. CONCLUSION AND FUTURE WORK
In this paper we presented an improved and extended ver-

sion of the SemAnt algorithm. SemAnt uses a probabilis-
tic model, in which every query leaves a small trace in the
overlay network, and the summation of all traces can be
used for subsequent queries as a hint which link to follow in
order to find appropriate results. The focus of this paper
was to investigate how hierarchical relationships between
query keywords can be employed for upgrading routing per-
formance. We compared the effectiveness of the algorithm
when using a flat namespace for keywords to its effective-
ness when using a hierarchic namespace. The results show
that SemAnt exhibits stable and robust results and that
its performance can be significantly improved by consider-
ing superconcept pheromone trails for routing. Since the
performance of content-based approaches to routing heavily
depends on how the content is distributed within the net-
work, we used different settings for the content distribution
to find out how much coherence in the content is necessary.

Our plans for the future are to conduct additional com-
parisons to other state-of-the-art approaches than k-random
walker. Moreover, we will consider different query distribu-
tions within the network. Finally, we will publish the per-
formance figures when using other than the optimal values
for the parameters of SemAnt.
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