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Abstract— This paper presents the design and evaluation of an
ant-based approach to query routing in peer-to-peer networks.
After pointing out how to employ the ant metaphor in peer-to-
peer networks, we conduct a thorough evaluation of the impact of
different settings for the configurable parameters present in ant
algorithms on the performance values. In particular, the focus is
on the effects of setting the ratio between (1) ants exploiting the
option currently known as the best one and (2) ants exploring
the search space with the aim of finding improved options. We
show that the exploitation-exploration dilemma can be avoided
by an adequate design of the exploring option.

Index Terms— Self-Organization, Peer-to-Peer Networks, Ant
Colony Optimization, Exploration, Exploitation, Distributed Ar-
tificial Intelligence, Multi-Agent Systems

I. I NTRODUCTION

The principles of self-organization and emergence have
received a lot of interest in the research community recently.
In particular, the trail-laying and trail-following behavior
observed from foraging ants has been employed for solv-
ing diverse problems in computer science. Although the ant
metaphor has been successfully applied to routing of data
packets both in wireless networks [1] and fixed networks [2],
little is yet known about its adequacy for the task of query
routing in peer-to-peer networks. The challenges for the latter
are the following: Each peer is connected via outgoing links to
some other peers which are called its neighbor peers. If a peer
issues a query or receives a forwarded query from one of its
neighbor peers, it has to decide based on itslocal knowledge
which neighbor peer to send the query to. Since ant-based
methods rely on local knowledge and indirect communication
only, they are suitable for this task.

In reputation learningapproaches [3] to query routing, the
local information of a peer is gained by (1) continuously
observing the queries and answers that pass the local node
and by (2) recording which kind of queries its neighbor peers
are able to answer. The recorded data must be accumulated and
stored in an appropriate way to support the neighbor selection
process. Based on the recorded data, the peer chooses the
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neighbor peer which is most likely to store results itself, or
has neighbor peers that are likely to store such resources.

One of the advantages of using the ant metaphor for repu-
tation learning is that it is readily applicable. Pheromone trails
store the accumulated data about the successful queries in the
past, and queries are represented as ants. This paper is part of
our ongoing efforts [4], [5] to design and evaluate SEMANT, a
reputation learning-based algorithm for query routing in peer-
to-peer networks compliant with theAnt Colony Optimization
meta-heuristic [6]. One of the challenges of our work is that
ant algorithms include various configurable parameters for
which appropriate value settings must be found. Ideally, it
would be possible to automatically determine these parameter
values at runtime. In particular, there is a parameter that
influences a basic decision each ant has to make before
selecting an outgoing link. It can either

• exploit the best results known so far for path selection,
or it can

• explore a path that is not currently known as the best
one in order to possibly find an improved solution to the
problem. If it succeeds, this will enhance the performance
of the system.

The question of which one of the strategies to select according
to its desirability in the current context of the ant is referred to
as theexploitation-exploration dilemma[7], [8]. The dilemma
occurs not only in ant algorithms, but in reinforcement learn-
ing [9] in general. In ant algorithms, the decision about which
strategy to use is performed based on a parameter that specifies
a pre-defined ratio between exploring and exploiting.

Contribution. The contribution of this paper is an eval-
uation of the impact of the ratio between exploring and
exploiting strategy in the context of query routing in peer-
to-peer networks. What we will show in the following is that
our algorithm is self-configuring in the sense that the overall
efficiency of the search process is the same no matter which
ratio is employed, and also the performance of the system as
perceived by individual users is not affected by the ratio.

Organization of the paper. This paper is organized as
follows. Sec. II defines the problem and states the assumptions
which were made. Sec. III contains a detailed description of
all aspects related to the SEMANT algorithm. Sec. IV, next
to showing the performance of the algorithm in comparison



to other approaches, presents experimental results that prove
the claims we made above. Sec. V provides a discussion of
related work on ant algorithms in peer-to-peer networks.

II. PROBLEM DESCRIPTION

A peer-to-peer network is a network consisting of inter-
connected nodes in which each node manages an information
repository containing a certain number of resources. Every
peer (1) offers its resources to the other nodes in the network
and (2) issues queries to the network. All nodes collaborate to
answer the queries and therefore – as a whole – implement a
distributed search engine. For each query, the shortest path
through the network must be found that leads from the
querying peer to one or more answering peers offering one or
more resources that are appropriate for satisfying the query.

The resources present at each peer can be any kind of files
that are annotated with metadata. The metadata are composed
of name-value pairs, also calledelements. These elements
are used for specifying additional information about a certain
resource. In general, a meta-data schema defines the name and
the meaning for each of the elements the schema is comprised
of. In the following a simplified view on the problem is used,
where only one element is considered. In addition, there is a
restriction on the allowed values. The values that can be used
for annotation originate from a controlled vocabulary, e.g, the
concepts of a taxonomy or an ontology.

The vocabulary for queries is the same as the metadata
vocabulary used for annotating resources. This means that the
queries do not consider the actual content of a resource, but
rather the metadata that describes this content. A queryQ
consists of a conceptc which will be referred to as the keyword
of the query hereafter. The resourceR will be referred to as
the result of the query.

In order to make it possible to concentrate on the problem
of query routing, the following assumptions are made about
the application scenario:

1) Each peer has an unique address that can be used as an
unique identifier.

2) The resources at each peer can be uniquely identified
using an existing resource identifier (such as a filename)
together with the peer identifier.

3) All links between peers are bi-directional, that is, can
be used in both directions.

4) The network topology already exists. Each peer already
knows which neighbor peers it is connected to. The
problem of peer discovery is not within the scope of
this paper.

5) The network topology and the content distribution in
the network is considered static. The extension of the
algorithm for a dynamic setting is subject of future work.

III. SPECIFICATION OF THE ALGORITHM

This section specifies the components of the SEMANT

algorithm. Sec. III-A documents the data structures that need
to be stored at each peer. Sec. III-B describes the query routing
procedure and all aspects related to facilitating ant algorithms
in a peer-to-peer network. In Sec. III-C, the mechanisms
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Fig. 1. The concept of forward and backward ants. Nodes is the querying
peer and noded is the answering peer. The solid lines show the path of the
forward ant, the dotted lines that of the backward ant.

to select outgoing links in the query routing procedure are
covered. Sec. III-D explicates how routing tables are updated
after successful queries. Sec. III-E describes the activities
executed locally at the peers.

A. Data structures

The routing information is stored in a tableτ which is
present at each peerPi. Table τ maintains the pheromone
trails. It is of sizeC×n, whereC is the size of the controlled
vocabulary that defines the allowed keywords in a query andn
is the number of peerPi’s outgoing links to neighbor peers.
Each τcu stores the amount of pheromone corresponding to
conceptc dropped at the link from peerPi to peerPu, for
each conceptc and each neighbor peerPu. All entries in
tableτ are initialized with the same valueτinit = 0.009. This
is necessary to prevent divisions by zero in the evaporation
feature (see Sec. III-E) and in link selection (see Sec. III-C).

B. Query routing

The concept of forward ants and backward ants (see Fig. 1)
from theAntNetalgorithm [2] is employed as the foundation of
the query routing procedure. In addition,AntNet’s mechanism
for preventing cycles is adopted. Whereas the latter can be
adopted without any changes, the concept of forward ants and
backward ants needs to be adapted to the application purpose
of query routing. In the following, the adaptations necessary
are discussed.

1) Queries: In the SEMANT algorithm, queries are repre-
sented as ants. This approach has two advantages. First, no ad-
ditional traffic is created in the network. Second, representing
queries as ants guarantees that the degree of optimization for
certain query keywords directly depends on the popularity of a
given keyword. The more often a query keyword is requested,
the better its paths will be optimized in terms of indicating
the way through the network to the most appropriate peers.
Instead of sending out forward ants at regular intervals from
random peers like inAntNet, a forward ant is created for each
query that occurs in the network. This ant is created at the peer
which issued the query, and it is responsible for answering it.

2) Link costs:Ant algorithms usually consider two different
types of information in the link selection process. First, there
is the pheromone distribution of the outgoing links. This
information is built incrementally by the ants. Second, there
is problem-specific information that defines the cost of every
link. In the case of query routing, this would be the time it



takes to travel from one peer to another. Since this feature
is already integrated in ant algorithms, including support for
different link costs in the SEMANT algorithm would be easily
possible. It would also be useful because in a real-world
setting, each link between two peers has a certain latency,
a certain bandwidth, and a certain throughput depending on
the hardware of the connection.

However, there are two reasons that make the evaluation
of this feature very cumbersome. First, there is no appro-
priate test data composed of a real-world network topology
together with defined latency/bandwidth/throughput properties
available. Second, even if such data would be available, there
is no other approach to search in peer-to-peer network that
considers different link costs. This makes it impossible to
conduct performance evaluation by comparison to reference
values. For these reasons, the algorithm only considers the
pheromone distribution of the outgoing links but no link costs.

3) Time-to-live parameter:Next, it is necessary to define
at which point the forward ant should stop its travel. InAnt-
Net, forward ants terminate their travel through the network
when they arrive at their well-defined destination peer. This
behavior can not be transferred, since the forward ant’s task is
to find an unknown destination peer that in the worst case does
not even exist. Instead, a stop point for forward ants must be
defined to prevent forward ants from running infinitely if no
results can be found. The simplest solution is to use a time-
to-live (TTL) parameterttlmax like introduced in Gnutella
(see [11]). Each time an ant travels one hop to reach another
peer, it decrementsttlmax by one. The stop point is reached
if ttlmax = 0.

4) MinResources variation and maxResults variation:After
a forward ant has found a result and creates a backward ant,
there are two possibilities for proceeding further. Either the
forward ant (1) terminates its travel, or (2) it continues it
until the maximum time-to-live parameter is reached. The idea
behind the latter approach is that if forward ants are allowed
to go on after they found the first peer that stores results, they
can increase the absolute number of results found by detecting
other appropriate peers. Keeping in mind that query routing
in peer-to-peer networks is a special kind of optimization
problem, the choice between these two options determines the
optimization goal of the algorithm:

• MinResourcevariation. If the ants are terminated after
they found the first result, the optimization goal is to use
the minimum amount of network resources. Therefore,
the forward ant strategy of stopping after the first result is
found will be referenced to as theminResourcevariation
of the SEMANT algorithm.

• MaxResultsvariation. In the other case, where the ants
use the maximum time-to-live parameter, the ants use
approximately the same amount of network resources for
each query and the optimization goal is to maximize the
number of results that are found for a query. The strategy
of using the maximum time-to-live parameter will be
referenced to as themaxResultsvariation of the SEMANT

algorithm.
In practice, both of these variations are valid because both
of the optimization goals are desired at the same time. Using

the minResourcevariation is of benefit for the performance of
the entire network, since the algorithm saves as much network
resources as possible. Using themaxResultsvariation is of ben-
efit for the individual users of the network, since the algorithm
tries to find as many results for a single query as possible. It
is possible to combine these variations by using a weight that
defines the ratio between employing theminResourcevariation
and employing themaxResultsvariation.

5) Step-by-step description of the query routing procedure:
Now the complete procedure for answering a query is laid
out. Consider a queryq issued at a peerPq. For simplicity, the
assumption is that queryq is a simple query containing exactly
one keywordc. The extensions to the algorithm for supporting
complex queries are described in [12]. The following seven
steps are necessary for answering queryq.

1) Check the resource repository of peerPq. If any results
are found, present them to the user. If the number of
results found is less thanrmax, go to step 2. If the
number of results found is greater thanrmax, terminate
the algorithm.

2) Create a forward antFq with timeoutttlmax at peerPq.
Add the identifier of peerPq to Fq ’s stack of already
visited peerss(Fq).

3) Use the link selection procedure described in Sec. III-C
to select the neighbor peer(s)Pjx (x ∈ [1..n], n ∈ N)
the forward antFq should choose. For every peerPjx

,
create a copy of forward antFq and send it to peerPjx

.
4) For every antFq that arrives at a peerPj , check

if peer Pj was already visited by a copy ofFq. If
so, terminate antFq. Otherwise, check the resource
repository of peerPj for resourcesr that are results
for queryQ. If there are no results, continue at step 6.
Otherwise, add the identifiers of all resourcesr to the
setR and continue at step 5.

5) Generate a backward antBq. Pass itR, the identifier of
the peerPj that storesR, and the stack of already visited
peerss(Fq). SendBq back to the querying peerPq

using the procedure described in Sec. III-D. In case the
minResourcesvariation is used, terminate the forward
ant Fq. Otherwise, continue at step 6.

6) Add the identifier of peerPj to the stack of already
visited peerss(Fq).

7) If ttlmax > 0, let Fq continue at step 3. Otherwise,
terminateFq.

As soon as a backward antBq arrives at the querying peerPq,
the resultsr ∈ R are presented to the user. In case the
user decides to download a resourcer, a direct connection
between peerPq and the peerPj that storesr is established
and resourcer is retrieved from peerPj .

C. Link selection

Now the selection of outgoing links by the forward ants is
described. In ant algorithms, this selection is made by applying
a so-called transition rule. The transition rule designed for the
SEMANT algorithm is based on the transition rule from theAnt
Colony Systemalgorithm [13], which consists of two strategies
that supplement each other. In the exploiting strategy, the ant



determines the quality of the links depending on the amounts
of pheromone and always selects the link with the highest
quality. The exploring strategy encourages ants to discover
new paths. This is achieved by deriving goodness values for
the neighbor peers according to the amounts of pheromone on
the links that lead to them, and by probabilistically selecting
a subset of the peers in proportion to their goodness values.

As already discussed in Sec. I, the decision for one of the
strategies is based on a parameterwe ∈ [0, 1]. For example, if
parameterwe is set to 0.85, the forward ants will employ
the exploiting strategy in 85% of the cases. Each time a
forward ant has to select an outgoing link, it individually
decides for a strategy by applying theroulette wheel selection
technique[14] together with parameterwe as an input value.
The strategies are defined as follows:

1) Exploiting strategy: In case the exploiting strategy is
used, a forward antFq located at a certain peerPi selects the
neighbor peerPj with the highest amount of pheromone for
the keyword of the query (see Eq. 1).

j = arg maxu∈U∧u/∈s(Fq)τcu (1)

In Eq. 1,U is the set of neighbor peers of peerPi, ands(Fq)
is the set of peers already visited byFq.

2) Exploring strategy: In case a forward antFq utilizes
the exploring strategy, the transition rule shown in Eq. 2a
and Eq. 2b is appliedfor eachneighbor peerPj in order to
decide whether peerPj should be selected. Note that this is
an adaptation of the roulette wheel selection technique: Each
pj is separatelyplaced on the continuum between0 and 1,
and for eachpj a random valueq is calculated for deciding
whether peerPj should be selected. This mechanism allows
more than one peer to be selected in order to account for the
fact that there are multiple possible destination peers which
contain answers for a query. To ensure that at least one peer
will be selected, the algorithm falls back to the exploiting
strategy in case applying the exploring strategy does result in
not selecting any peer.

pj =
τcj∑

u∈U∧u/∈s(Fq) τcu
(2a)

In Eq. 2a, the assumption is that a forward antFq is located
at a certain peerPi, U is the set of neighbor peers of peerPi,
ands(Fq) is the set of peers already visited byFq.

GOj =
{

1 if q ≤ pj ∧ j ∈ U ∧ j /∈ s(Fq)
0 else

(2b)

In Eq. 2b, q is a random value,q ∈ [0, 1], and the sum of
all goodness values

∑
j∈U∧j /∈s(Fq) pj = 1. If GOj = 1, the

forward antFq creates a copy of itself and sends it to peerPj .

D. Routing table updates

A description of the mechanism used by the backward ants
for updating the routing tables follows. A backward ant is
created at a certain peerPr storing a set of resultsR. Each
backward antBq is in possession of a copy of the stack data
containing a list of all visited peerss(Fq) recorded by its
corresponding forward antFq. Based on this information, the

backward antBq calculates the number of hopshqr between
the querying peerPq and the answering peerPr. After that,
it travels back hop-by-hop to the querying peerPq according
to the information stored ins(Fq). At each intermediate peer,
antBq is responsible for dropping pheromone by applying the
pheromone trail update rule shown in Eq. 3a and Eq. 3b. The
amount of newly added pheromone depends on the goodness
of the found path, which is determined by comparing the
number of resources found and the length of the path to pre-
defined reference values. For the reference solution, the value
for a path’s total length is set to12 · ttlmax, and the number
of resources is set tormax.

τcj ← τcj + Z, (3a)

where

Z = wd ·
|R|

rmax
+ (1− wd) ·

ttlmax

2 · hqr
(3b)

In Eq. 3b, parameterwd weights the influence of resource
quantities and path length.

E. Peer activity

Each peer performs management procedures on its local
routing table. It applies the evaporation rule shown in Eq. 4 in
predefined intervalste for each link to neighbor peerPu and
each conceptc. The amount of pheromone that evaporates in
every interval is controlled by parameterρ ∈ [0, 1].

τcu ← (1− ρ) · τcu (4)

This rule is adopted from the evaporation part ofAnt Colony
System’s global pheromone update rule [13].

IV. RESULTS

This section describes the experimental evaluation of the
the SEMANT algorithm. After presenting the setup used in
Sec. IV-A, the metrics and the rationale behind choosing them
are discussed in Sec. IV-B. Sec. IV-C shows the performance
in comparison, and Sec. IV-D discusses the exploitation-
exploration dilemma in context.

A. Setup

For evaluating the design of the algorithm, a peer-to-peer
system needs to be simulated. The SEMANT algorithm is
independent from a certain application scenario. It can be used
in every situation in which groups of individuals want to share
annotated resources. The application scenario chosen for the
evaluation is to support the cooperation between researchers in
computer science by allowing them to share scientific articles.

The three most important characteristics of a peer-to-peer
system that have an impact on the performance of the search
algorithm used are the (1) network topology used, the (2)
distribution of the content within the network, and (3) the
distribution of queries within the network. The specifications
for all three of them will be described below.

Network topology. Since the use case concerns a commu-
nity of researchers and therefore a social network, asmall



world [15] network topology is selected for the experiments
in order to choose a realistic model for social networks. The
size of the network is set to 1024 peers, and the clustering
coefficient of the network is set to 1.

Content distribution. The content is modeled by utiliz-
ing the ACM Computing Classification System [16] as the
underlying meta-data vocabulary. The ACM Computing Clas-
sification System is a taxonomy consisting of 1473 concepts
for the domain of scientific literature in the field of computer
science. Each resource is annotated with one keyword, i.e.,
each resource is an instance of one leaf concept from the
taxonomy. In total, the ACM Computing Classification System
taxonomy contains 910 leaf concepts. In order to represent
each research topic equally, the same number of resources is
created for each leaf concept. Each peer stores on average
30 resources. In real-world settings, the available resources in
a peer-to-peer network are not randomly distributed among
the peers. Instead, patterns in the data can be observed since
the interests of the peers are not uniform, but each peers
concentrates on one or a few topics it has special interests
in. In the application scenario of researchers, the special
interests are certain research areas. Modeling research areas
with the leaf concepts from the taxonomy would lead to very
narrow interests. Therefore, the sub-concepts of a third-level
concept of the taxonomy are facilitated for modeling a research
area. There are 177 third-level concepts in the taxonomy.
The assumption is that each peer is an expert on a certain
research area and for this reason, on average 60% of the
resources in his or her repository are instances of one particular
research area. On average, another 20% of the resources are
related to another research area. The remaining 20% of the
resources are instances of random leaf concepts. Note that
the hierarchical relationships between the concepts in the
taxonomy are used only for modeling the research areas, but
not for query routing. This topic has been addressed in [17],
together with an evaluation of the impact of different content
distributions on the performance of the algorithm.

Query distribution. In a real-world scenario, the query
distribution would be power-law. For simplicity, in this ex-
periment an uniform query distribution is assumed. A ticker
clock at each peer is used, and the probability that a peer
issues a query within one time unit is set to 0.1. Each query
consists of a randomly selected leaf concept from the ACM
Computing Classification System taxonomy.

B. Metrics

Several scientific articles about peer-to-peer systems use the
metrics of precision and recall [18] known from information
retrieval for their evaluation. The drawback of relying on these

ρ evaporation factor 0.07
ttlmax timeout of forward ants 15
we weight of exploiting vs. exploring strategy 0.85
rmax maximum number of resources 10
wd weight of resource quantity vs. link costs 0.5

TABLE I

PARAMETER VALUES CHOSEN FOR THESEMANT ALGORITHM

metrics is that they do not include the traffic created in the
network. Our aim is to create an algorithm for query routing
which has the property of a low ratio between network traffic
and quantity of results. Therefore, we do not rely on precision
and recall, but employ the following metrics instead:

• Resource usageis defined as the number of links traveled
for each query within a given period of time.

• Hit rate is defined as the number of resources found for
each query within a given period of time.

• Efficiency is the ratio of resource usage to hit rate. If
we divide the number of links traveled by the number
of resources found, we get the average number of links
traveled to find one resource, which is the most practical
metric.

Obviously, these metrics have the drawback that the recall
– which measures the ratio between resources found and
resources present in the network – is not known. The value
for precision, which measures the ratio between correctly
found resources and false positives, is always 100% since the
SEMANT algorithm does not produce false positives.

C. Performance evaluation

For performance evaluation, the SEMANT algorithm is com-
pared against the well-knownk-random walkerapproach [19].
A random walker is similar to a forward ant, except from
the fact that it does not rely on routing tables, but instead
makes a random decision about which outgoing link to choose
in the link selection procedure. If resources are found, the
walker sends an information message back to the querying
peer, similar to a backward ant, and walks on. There are two
configurable parameters:k is the number of walkers per query,
and a time-to-live parameterTTL defines the timeout for the
walkers. The time horizon for the experiment is set to 5000
time units. The parameter values shown in Table I are used for
the configurable parameters of the SEMANT algorithm. Both
the minResourcevariation and themaxResultsvariation are
evaluated. In order to provide for comparison fairness,

• both algorithms use the same setup as described in
Sec. IV-A,

• the time-to-live parameters are set to an equal value, and
• the parameter settings for the algorithms are set in such

a way that – in total – the agents of both algorithms are
allowed to travel a comparable number of links.

Consequently, the parameters for thek-random walkeralgo-
rithm are set tok = 2 and TTL = 15. The results of the
comparison are shown in Fig. 2 to Fig. 4. Note that Fig. 2
includes the resource usage of both forward and backward
ants/agents for both algorithms. An evaluation of the impact
of varying the values used for the control parameters on the
performance of the algorithm can be found in [20].

It can be seen that both variations of the SEMANT algorithm
outperform thek-random walkerapproach. On average, the
latter needs29.7 hops for retrieving0.79 results per query.
This means that approximately37.3 hops are necessary for
retrieving one appropriate resource. Since thek-random walker
approach does not include any kind of optimization, the
performance values do not improve but stay nearly constant
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Fig. 4. Efficiency comparison between SEMANT using theminResources
variation, SEMANT using themaxResultsvariation, andk-random walker

over time. On the contrary, the SEMANT algorithm – which
in the start-up phase, where all the pheromone trails store the
same amount of pheromone, shows only slightly better results
as thek-random walkerreference – optimizes its performance.
Especially between time unit0 and time unit 1000, the
performance values improve significantly. About1500 time
units are necessary to reach a converged phase in which the
results are nearly stable and show only slight improvements.

The figures clearly indicate that – depending on which
variation of the SEMANT algorithm used – two different

optimization problems are solved. In case of themaxResults
variation, the hit rate is maximized. After 5000 time units, on
average2.9 resources per query are found (Fig. 3). However,
the resource usage decreases only slightly in comparison to the
k-random walkerreference values. After5000 time units, on
average28.7 hops are necessary for query routing (Fig. 2).
On the other hand, employing theminResourcevariation
minimizes the resource usage of the ants. In this case, after
5000 time units16.9 hops are needed on average (Fig. 2) for
finding on average1.9 resources per query (Fig. 3). Note that
in Fig. 2, the dotted curve for resource usage between time
unit 0 and time unit2500 in the minResourcevariation does
not seem to decline as rapidly, but considering that (1) the
hit rate increases at the same time and that (2) hit rate has an
effect on resource usage, the decline of the curve is significant.
The effects of minimizing resource usage and maximizing hit
rate depending on the variation are even more present if a
higher value for parameterttlmax is used (see [12] for figures).
However, as also shown in [12], employing a higher value for
ttlmax has a negative effect on performance.

Since hit rate and resource usage depend on each other,
the best way of comparing the variations against each other
is to use the metric of efficiency (Fig. 4). It can be seen
that in the minResourcevariation less hops are necessary
to retrieve one resource in comparison to themaxResults
variation. These results show that for the overall performance
of the system, theminResourcevariation has a higher benefit
in terms of a lower number of hops traveled for retrieving
one resource. The average difference over the complete time
span is is approximately1.13 hops per query (12.51 hops on
average/11.38 hops on average). The cause for this difference
can be explained as follows. In themaxResultsvariation, when
the forward ants continue searching after they found the first
appropriate peer, they tend to stay in the neighborhood of
the peer they already found and try to go back to it because
the pheromone trails indicate that there is an appropriate peer
nearby. However, this wastes resources since forwards ants
are not allowed to visit the same peer twice. For this reason,
the minResourcevariation of the SEMANT algorithm is more
favorable than themaxResultsvariation.

D. Exploration versus Exploitation

Now we address the exploitation-exploration dilemma by
acquiring the simulation results for several different settings
for parameterwe. Since in the previous experiment it turned
out to perform better, theminResourcevariation is employed.
For the parameters other thanwe, the settings described in
Sec. IV-C are used. The results of the comparison are given
in Fig. 5 to Fig. 7. Fig. 5 shows that in the start-up phase, the
resource usage is proportional to the ratio between exploring
and exploiting strategy. The more forward ants employ the
exploring strategy, the higher the amount of messages in the
network. Consequently, for the overall load of the system it
is better to employ a low rate of exploring forward ants, but
also a high rate, e.g.,we = 0.05, is feasible. Although in this
case the resource usage at time unit0 is much higher (168.4
hops on average) than in case of a low rate (e.g.,16.7 hops on



0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000

time

re
so

ur
ce

 u
sa

ge
0.95 0.85 0.75 0.65 0.55
0.45 0.35 0.25 0.15 0.05
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Fig. 6. Hit rate of SEMANT using theminResourcesvariation when varying
the value used for parameterwe. The curves converge to the same limit.

average forwe = 0.95), still not even half as many resources
are consumed as when using broadcast with a time-to-live
parameter of4. The hit rate is dependent on parameterwe

not only in the start-up phase, but also in the converged phase
(Fig. 6). The more exploring forward ants in the network, the
better the pheromone trails and, consequently, the higher the
hit rate. The best result can be reached for settingwe = 0.05.
After 5000 time units,2.24 resources on average are found in
this case. The worst possible result (1.92 resources on average
after 5000 time units) is obtained for settingwe = 0.95.
However, the difference in absolute numbers is marginal and
the curves converge to the same limit over time.

Combining the two metrics shows that, independently from
the ratio between exploring and exploiting strategy, the overall
efficiency in terms of hops necessary for answering a query is
similar for every setting of parameterwe. Although a higher
rate of exploring ants gives slightly less efficient results in
the start-up phase, at the same time it moderately improves
the performance in the converged phase. Fig. 7 highlights this
by depicting the efficiency results forwe = 0.05 and we =
0.95 plotted in log-log scale. Table II – showing the average
efficiency over the complete time span for every setting of
parameterwe – reveals that those two effects are in balance
with each other. The mean of all values is11.39 hops per
query, and the low standard deviation of0.087 indicates that
there are no significant differences in average efficiency when
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Fig. 7. Log-log plot of the efficiency of SEMANT using theminResources
variation for parameterwe ∈ [0.05, 0.95]. A higher rate of exploring ants
results in slightly less efficient results in the start-up phase, but improves
the performance in the converged phase. The curves for the other settings of
parameterwe lie in between those shown and are omitted for clarity. Note
that the time axis is stretched by factor2.

0.05 0.15 0.25 0.35 0.45 mean
11.43 11.31 11.33 11.45 11.25 11, 38619209
0.55 0.65 0.75 0.85 0.95 standard deviation

11.35 11.37 11.42 11.38 11.57 0, 087454343

TABLE II

AVERAGE EFFICIENCY OFSEMANT USING THE minResourcesVARIATION

WHEN VARYING THE VALUE USED FOR PARAMETERwe

varying the ratio between exploring and exploiting strategy.
The reason for this effect lies in the design of the exploring
strategy. It can be explained by the fact that, although the
forward ants choose outgoing links that are not currently
known as the best ones, they still make this decision in
proportion to their desirability.

V. RELATED WORK

We identified three areas in which work related to ours
can be found. First, the exploitation-exploration dilemma has
been discussed in several contexts, such as in the case of
foraging bees [21], in economic systems [22], in software
product development [23], and others. Second, there is related
work on ant algorithms in peer-to-peer networks.

Anthill [24] is a open source framework for the design,
implementation, and evaluation of ant algorithms in peer-to-
peer networks. There are two applications based on the Anthill
framework. Gnutant [24] is a file-sharing application. In Gnu-
tant, each file is identified by an unique file identifier and as-
sociated with meta-data comprised of textual keywords. Three
different types of ants are responsible (1) for constructing a
distributed index that contains URLs pointing to shared files
and (2) for managing routing tables. If a user adds a new file to
a nest, oneInsertAntis generated for each keyword of the file.
InsertAnts propagate the presence of new files to the network
by updating the distributed index. Gnutant utilizes hashed
keyword routing based on the Secure Hash Algorithm (SHA).
Each index entry contains the hash value of a keyword together
with a set of nests that are likely to store files associated with
the given keyword.SearchAntsare generated upon user queries



and exploit the information stored in the routing tables in order
to find files that match the queries’ keywords. If no index
entry that exactly matches the query’s hash value exists, the
SearchAnt selects the hash value that most closely matches the
hash value of the query. If a SearchAnt localizes an appropriate
file, it generates aReplyAntthat immediately returns to the
source nest and informs the user about the result of his or
her query. Messor [25] implements load-balancing for peer-
to-peer networks based on the necrophoric behavior of ants.
Schelfthout and Holvoet [26] evaluate whether the principle
of synthetic pheromone can be employed for coordination in
distributed agent-oriented environments. Their framework is
based on the idea of objectspaces known from concurrent com-
puting. Similar toGnutant, Schelthout et al. create pheromone
trails for each query and allow agents to follow trails that
represent one of the keywords in the query. In addition,
an evaporation feature is integrated. Handt [27] tackles the
problem of search in peer-to-peer networks by inverting it.
Instead of peers issuing queries, the annotated resources move
through the network and lay/follow pheromone trails that guide
them. In addition, the peers re-order according to their interests
which are determined by creating node profiles out of the
meta-data their locally stored resources are marked-up with.

Third and finally, there is work addressing the applicability
of biological processes other than ant-based methods to peer-
to-peer networks, e.g., by Babaoglu et al. [28], who apply the
principles of proliferation to search in unstructured overlay
networks.

VI. CONCLUSION

In this paper we evaluated the effectiveness of the self-
organizing and emergent behavior observed from natural ants
for query routing in peer-to-peer networks. We specified two
possible variations of the SEMANT algorithm based on theAnt
Colony Optimizationmeta-heuristic and experimentally eval-
uated the performance of both variations in order to identify
the superior one. After that, we addressed the exploration-
exploitation-dilemma by showing that the overall efficiency of
the SEMANT algorithm’s search process is not influenced by
the parameter value chosen for the ratio between exploring and
exploiting forwards ants. This finding is important, because it
simplifies the configuration of the algorithm and makes its
behavior more easily predictable.
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