Self-Organization for Search in Peer-to-Peer
Networks: The Exploitation-Exploration Dilemma

Elke Michimayr
Women's Postgraduate College for Internet Technologies (WIT)
Institute of Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstrasse 9-11/E188, 1040 Vienna, Austria
Telephone: 0043 1 58801 18816
Email: michimayr@wit.tuwien.ac.at

Abstract— This paper presents the design and evaluation of an neighbor peer which is most likely to store results itself, or
ant-based approach to query routing in peer-to-peer networks. has neighbor peers that are likely to store such resources.
After pointing out how to employ the ant metaphor in peer-to- — Qne of the advantages of using the ant metaphor for repu-
peer networks, we conduct a thorough evaluation of the impact of tation learning is that it is readily applicable. Pheromone trails
different settings for the configurable parameters present in ant : o
algorithms on the performance values. In particular, the focus is Store the accumulated data about the successful queries in the
on the effects of setting the ratio between (1) ants exploiting the past, and queries are represented as ants. This paper is part of
option currently known as the best one and (2) ants exploring our ongoing efforts [4], [5] to design and evaluaten8ANT, a
the search space with the aim of finding improved options. We yaptation learning-based algorithm for query routing in peer-
show that the explo!tatlon-exploratlon dllem_ma can be avoided to- twork liant with thent Col Obtimizati
by an adequate design of the exploring option. peer NEtworks compfiant wi olony Lptimization

o meta-heuristic [6]. One of the challenges of our work is that
Index Terms— Self-Organization, Peer-to-Peer Networks, Ant gt glgorithms include various configurable parameters for
%?g%?%n?eﬁﬁ'gﬁgg?muﬁ;f_ﬂggf&;éﬂgm'on‘ Distributed Ar- which approprﬁate value sett?ngs must bg found. Ideally, it
would be possible to automatically determine these parameter
values at runtime. In particular, there is a parameter that
I. INTRODUCTION influences a basic decision each ant has to make before
. L selecting an outgoing link. It can either

The prlnC|pIes_ of self-_organlzanon and emergence have. exploit the best results known so far for path selection,
received a lot of interest in the research community recently. or it can
In particular, the trail—laying and trail-following behavior . explorea path that is not currently known as the best
observed from foraging ants has been employed for solv- one in order to possibly find an improved solution to the

ing diverse problems in computer science. AIthou_gh the ant problem. If it succeeds, this will enhance the performance
metaphor has been successfully applied to routing of data of the system

packets both in wireless networks [1] and fixed networks [21‘he guestion of which one of the strategies to select according

little is yet known about its adequacy for the task of QuUeY its desirability in the current context of the ant is referred to

routing in peer-to-peer networks. The challenges for the Iattfsr, theexploitation-exploration dilemmr], [8]. The dilemma

are the following: Eac_h peeris conn_ected_ via outgoing links Stcurs not only in ant algorithms, but in reinforcement learn-
some other peers which are called its neighbor peers. If a peer (4 : . . .
g [9] in general. In ant algorithms, the decision about which

issues a query or receives a forwarded query from one ofé . o
: . . ) rategy to use is performed based on a parameter that specifies
neighbor peers, it has to decide based oratal knowledge a re-%):efined ratig between exploring a[r)1d exploiting. P

which neighbor peer to send the query to. Since ant-base ontribution. The contribution of this paper is an eval-

methods rely on local knowledge and indirect communicatiqﬂjltion of the impact of the ratio between exploring and
onIIy, they are slwtabl'e for this tiSk' , h exploiting strategy in the context of query routing in peer-
| nlr_ep}utatlor_l ear?lngapprogc es [SLt%query routing, t ?to-peer networks. What we will show in the following is that
ot;:a n ormhat|0n or a peder IS galneh y (@) cr(])ntllnuo:Js Bur algorithm is self-configuring in the sense that the overall
observing the queries and answers that pass the loca n%ﬂ’ﬁ:iency of the search process is the same no matter which

and by (2) recording which kind of queries its neighbor PE€L3tio is employed, and also the performance of the system as
are able to answer. The recorded data must be accumulated eived by individual users is not affected by the ratio.

stored in an appropriate way to support the neighbor seleCtiorbrganization of the paper. This paper is organized as

process. Based on the recorded data, the peer choosesdfj§s sec. Il defines the problem and states the assumptions

_ _ - which were made. Sec. Il contains a detailed description of
This research has been funded by the Austrian Federal Ministry for lated heESIA | ith S Y
Education, Science, and Culture (bm:bwk), and the European Social Fund @Spects related to thee®ANT algorithm. Sec. IV, next

(ESF) under grant 31.963/46-VI11/9/2002. to showing the performance of the algorithm in comparison



to other approaches, presents experimental results that prove Forward ant
the claims we made above. Sec. V provides a discussion of LA
related work on ant algorithms in peer-to-peer networks.

Il. PROBLEM DESCRIPTION

A peer-to-peer network is a network consisting of inter- G
connected nodes in which each node manages an information Backward ant
repOSitory containing a certain number of resources. EVQ{- . 1. The concept of forward and backward ants. Neds the querying
peer (1) offers its resources to the other nodes in the netw@dér and node is the answering peer. The solid lines show the path of the
and (2) issues queries to the network. All nodes collaboratefggvard ant, the dotted lines that of the backward ant.
answer the queries and therefore — as a whole — implement a

distributed search engine. For each query, the shortest path

trough the rework must be found that leads fom e B2t S DL D LS e e
guerying peer to one or more answering peers offering one ’ ) P 9 P

more resources that are appropriate for satisfying the querz%er successful queries. Sec. IlI-E describes the activities

The resources present at each peer can be any kind of fi é(SCUted locally at the peers.
that are annotated with metadata. The metadata are composed
of name-value pairs, also calleelements These elements A. Data structures
are used for specifying additional information about a certain The routing information is stored in a tabte which is
resource. In general, a meta-data schema defines the namepaegent at each ped?;. Table 7 maintains the pheromone
the meaning for each of the elements the schema is comprigeils. It is of sizeC x n, whereC is the size of the controlled
of. In the following a simplified view on the problem is usedyocabulary that defines the allowed keywords in a queryrand
where only one element is considered. In addition, there igsathe number of peeP;’s outgoing links to neighbor peers.
restriction on the allowed values. The values that can be ugeach r., stores the amount of pheromone corresponding to
for annotation originate from a controlled vocabulary, e.g, trednceptc dropped at the link from peeP; to peerP,, for
concepts of a taxonomy or an ontology. each concept and each neighbor ped?,. All entries in
The vocabulary for queries is the same as the metadgibdle r are initialized with the same valug,,;; = 0.009. This
vocabulary used for annotating resources. This means that ihéecessary to prevent divisions by zero in the evaporation
gueries do not consider the actual content of a resource, feiture (see Sec. IlI-E) and in link selection (see Sec. III-C).
rather the metadata that describes this content. A qdgry
consists of a conceptwhich will be referred to as the keyword
of the query hereafter. The resourBewill be referred to as

the result of the query. ) X X
In order to make it possible to concentrate on the probleffP™ theAntNetalgorithm [2] is employed as the foundation of
f}e query routing procedure. In additiofntNets mechanism

of query routing, the following assumptions are made abop ) :
the application scenario: or preventing cycles is adopted. Whereas the latter can be

. adopted without any changes, the concept of forward ants and
D Erigﬁs%egnr:;iz ran unique address that can be used aﬁaacrsward ants needs to be adapted to the application purpose

. . _.of query routing. In the following, the adaptations necessar
2) The resources at each peer can be uniquely |dent|f|§ qdisgussed g 9 P y

using an existing resource identifier (such as a filename 1) Queries: In the SEMANT algorithm, queries are repre-

toge_ther with the peer |dent|f|e_r. o . sented as ants. This approach has two advantages. First, no ad-
3) All links _between_pee_rs are bi-directional, that is, C@fitional traffic is created in the network. Second, representing
be used in both directions. . ueries as ants guarantees that the degree of optimization for
4) The netwqu topqlogy already gm;ts. Each peer alreaagrtain query keywords directly depends on the popularity of a
knows which ne|ghbor peers It is gonnected to. Th iven keyword. The more often a query keyword is requested,
prpblem of peer discovery is not within the scope he better its paths will be optimized in terms of indicating
this paper. . .. .. .the way through the network to the most appropriate peers.
5) The network. topology and the_ content dlstrlputmn hstead of sending out forward ants at regular intervals from
the n_etwork IS conS|d_ered _stat_lc. Th_e extension of t &ndom peers like ilAntNet a forward ant is created for each
algorithm for a dynamic setting is subject of future Workquery that occurs in the network. This ant is created at the peer
which issued the query, and it is responsible for answering it.
Ill. SPECIFICATION OF THE ALGORITHM 2) Link costs:Ant algorithms usually consider two different
This section specifies the components of theMBNT types of information in the link selection process. First, there
algorithm. Sec. llI-A documents the data structures that nesdthe pheromone distribution of the outgoing links. This
to be stored at each peer. Sec. llI-B describes the query routinfprmation is built incrementally by the ants. Second, there
procedure and all aspects related to facilitating ant algorithrissproblem-specific information that defines the cost of every
in a peer-to-peer network. In Sec. llI-C, the mechanisntisk. In the case of query routing, this would be the time it

B. Query routing
The concept of forward ants and backward ants (see Fig. 1)



takes to travel from one peer to another. Since this featutee minResourcevariation is of benefit for the performance of
is already integrated in ant algorithms, including support fdhe entire network, since the algorithm saves as much network
different link costs in the SMANT algorithm would be easily resources as possible. Using thaxResultsariation is of ben-
possible. It would also be useful because in a real-wordit for the individual users of the network, since the algorithm
setting, each link between two peers has a certain latentries to find as many results for a single query as possible. It
a certain bandwidth, and a certain throughput depending isnpossible to combine these variations by using a weight that
the hardware of the connection. defines the ratio between employing thenResourceariation
However, there are two reasons that make the evaluatiand employing thenaxResultvariation.
of this feature very cumbersome. First, there is no appro-5) Step-by-step description of the query routing procedure:
priate test data composed of a real-world network topologyow the complete procedure for answering a query is laid
together with defined latency/bandwidth/throughput propertiesit. Consider a query issued at a peef,. For simplicity, the
available. Second, even if such data would be available, theresumption is that queryis a simple query containing exactly
is no other approach to search in peer-to-peer network tlmte keyworde. The extensions to the algorithm for supporting
considers different link costs. This makes it impossible tcomplex queries are described in [12]. The following seven
conduct performance evaluation by comparison to referersteps are necessary for answering qugry
values. For these reasons, the algorithm only considers thg) Check the resource repository of peeyr If any results
pheromone distribution of the outgoing links but no link costs. are found, present them to the user. If the number of
3) Time-to-live parameterNext, it is necessary to define results found is less than,,.., go to step 2. If the
at which point the forward ant should stop its travel. Ant- number of results found is greater thay,., terminate
Net, forward ants terminate their travel through the network  he gigorithm.
when _they arrive at their WeII-def_med destination pe?r. Thls_, 2) Create a forward anf, with timeouttl,,,, at peerp,.
behawor can not be trar_lsfe_rred, since th_e forward ant’s task is * aqd the identifier of peetP, to F,’s stack of already
to find an unknown destination peer that in the worst case does jisjted peerss(F,).
not even exist. Instead, a stop point for forward ants must beg) yse the link selection procedure described in Sec. I11-C
defined to prevent forward ants from running infinitely if no to select the neighbor peer(®), (z € [1..n],n € N)
results can be found. The simplest solution is to use a time-  he forward antF,, should choose. For every pe#

to-live (TTL) parameterttl,q, like introduced in Gnutella create a copy of forward arft, and send it to peeP;. .
(see [;1]). Each time an ant travels one hop to rgach anotheﬁ) For every antF, that arrives at a peef;, check
peer, it decrementtfl,,,, by one. The stop point is reached if peer P, was already visited by a copy of,. If
if ttlar = 0. so, terminate antfy,. Otherwise, check the resource

4) MinResources variation and maxResults variatiéditer
a forward ant has found a result and creates a backward ant,
there are two possibilities for proceeding further. Either the Otherwise, add the identifiers of all resourceso the
forward ant (1) terminates its travel, or (2) it continues it setR and continue at step 5.
until the maximum time-to-live parameter is reached. The ideagy Generate a backward aB,. Pass itR, the identifier of
behind the latter approach is that if forward ants are allowed
to go on after they found the first peer that stores results, they
can increase the absolute number of results found by detecting
other appropriate peers. Keeping in mind that query routing
in peer-to-peer networks is a special kind of optimization
problem, the choice between these two options determines th%) Add the identifier of peer; to the stack of already
optimization goal of the algorithm: visited peerss(F).
« MinResourcevariation. If the ants are terminated after 7y |t 4, .~ ~ 0, let F, continue at step 3. Otherwise,
they found the first result, the optimization goal is to use terminateF,.
the minimum amount of network resources. Thereforg, : ;
the forward ant strategy of stopping after the first result %s soon as & backward afy, arrives at the querying peet,,

tound will be ref dqt thainR it e resultsr € R are presented to the user. In case the
ound wil be relerenced 1o as theinkesourceanation ,ser gecides to download a resouncea direct connection
of the EEMANT algorithm.

. between peef’, and the peerP; that stores- is established
» MaxResultsvariation. In the other case, where the ants, 4 resource is retrieved from peeP;
J*

use the maximum time-to-live parameter, the ants use
approximately the same amount of network resources for
each query and the optimization goal is to maximize tHe- Link selection
number of results that are found for a query. The strategyNow the selection of outgoing links by the forward ants is
of using the maximum time-to-live parameter will bedescribed. In ant algorithms, this selection is made by applying
referenced to as th@axResultsariation of the EMANT  a so-called transition rule. The transition rule designed for the
algorithm. SEMANT algorithm is based on the transition rule from et
In practice, both of these variations are valid because bdltvlony Systeralgorithm [13], which consists of two strategies
of the optimization goals are desired at the same time. Usititat supplement each other. In the exploiting strategy, the ant

repository of peerP; for resourcesr that are results
for query Q. If there are no results, continue at step 6.

the peerP; that stores, and the stack of already visited
peerss(Fy,). Send B, back to the querying peep,
using the procedure described in Sec. IlI-D. In case the
minResourcevariation is used, terminate the forward
ant I,. Otherwise, continue at step 6.



determines the quality of the links depending on the amourdackward antB, calculates the number of hops, between

of pheromone and always selects the link with the highetfte querying pee’, and the answering peéf,. After that,

quality. The exploring strategy encourages ants to discovetravels back hop-by-hop to the querying pegéraccording

new paths. This is achieved by deriving goodness values forthe information stored ia(F;). At each intermediate peer,

the neighbor peers according to the amounts of pheromoneau B,, is responsible for dropping pheromone by applying the

the links that lead to them, and by probabilistically selectingheromone trail update rule shown in Eq. 3a and Eqg. 3b. The

a subset of the peers in proportion to their goodness valueamount of newly added pheromone depends on the goodness
As already discussed in Sec. |, the decision for one of tleé the found path, which is determined by comparing the

strategies is based on a parametere [0, 1]. For example, if number of resources found and the length of the path to pre-

parameterw, is set t00.85, the forward ants will employ defined reference values. For the reference solution, the value

the exploiting strategy in 85% of the cases. Each timefer a path’s total length is set tg - t¢l,,,,, and the number

forward ant has to select an outgoing link, it individuallyof resources is set t0,,4..

decides for a strategy by applying trmulette wheel selection

technique[14] together with parameter, as an input value. Tej — Tej + 2, (3a)

The strategies are defined as follows:

1) Exploiting strategy:In case the exploiting strategy isWhere R| o
used, a forward anF, located at a certain ped selects the Z = wq - e (1 —wg) - 57 (3b)
neighbor peerP; with the highest amount of pheromone for e o
the keyword of the query (see Eq. 1). In Eq. 3b, parametetw,; weights the influence of resource

guantities and path length.

j =arg maquU/\u&s(Fq)Tcu (1)

In Eq. 1,U is the set of neighbor peers of peRy, ands(F,) E. Peer activity

is the set of peers already visited BY. Each peer performs management procedures on its local

2) Exploring strategy:In case a forward anf, utilizes routing table. It applies the evaporation rule shown in Eg. 4 in
the exploring strategy, the transition rule shown in Eq. Zaedefined intervalg. for each link to neighbor peeP, and
and Eq. 2b is appliedor eachneighbor peerP; in order to each concept. The amount of pheromone that evaporates in
decide whether peeP; should be selected. Note that this igvery interval is controlled by parametere [0, 1].
an adaptation of the roulette wheel selection technique: Each
p; is separatelyplaced on the continuum betweé&nand 1, Tew — (L= p) * Teu (4)
az‘jetfhoére;:gg i;gﬂ%ogqevilljits dciﬁ?sla;?:;gn?s?'(2;?3WThis rule is adopted from the evaporation partfaft Colony

J " sters global pheromone update rule [13].

more than one peer to be selected in order to account for t
fact that there are multiple possible destination peers which
contain answers for a query. To ensure that at least one peer IV. REsuLTS
will be selected, the algorithm falls back to the exploiting This section describes the experimental evaluation of the
strategy in case applying the exploring strategy does resultthe SEMANT algorithm. After presenting the setup used in

not selecting any peer. Sec. IV-A, the metrics and the rationale behind choosing them
are discussed in Sec. IV-B. Sec. IV-C shows the performance
pj = Tej (2a) in comparison, and Sec. IV-D discusses the exploitation-

EuEU/\uQs(Fq) Teu exploration dilemma in context.

In Eq. 2a, the assumption is that a forward #itis located
at a certain peer;, U is the set of neighbor peers of per, A, Setup

ands(Fy) is the set of peers already visited By. For evaluating the design of the algorithm, a peer-to-peer
GO. — { Lif g<piNjeUNj¢s(F,) (2b) system needs to be simulated. TheMANT algorithm is
771 0else independent from a certain application scenario. It can be used
in every situation in which groups of individuals want to share
annotated resources. The application scenario chosen for the
evaluation is to support the cooperation between researchers in
computer science by allowing them to share scientific articles.

_ The three most important characteristics of a peer-to-peer
D. Routing table updates system that have an impact on the performance of the search
A description of the mechanism used by the backward aratigorithm used are the (1) network topology used, the (2)
for updating the routing tables follows. A backward ant iglistribution of the content within the network, and (3) the
created at a certain pedi. storing a set of result®. Each distribution of queries within the network. The specifications

backward antB, is in possession of a copy of the stack datkor all three of them will be described below.
containing a list of all visited peers(F,) recorded by its  Network topology. Since the use case concerns a commu-
corresponding forward arff;,. Based on this information, thenity of researchers and therefore a social networlsnall

In Eqg. 2b,q is a random valueg € [0, 1], and the sum of
all goodness valuey_ ;i ¢s(r,)Pi = 1. If GO; =1, the
forward antF;, creates a copy of itself and sends it to peer



world [15] network topology is selected for the experimentmetrics is that they do not include the traffic created in the
in order to choose a realistic model for social networks. Theetwork. Our aim is to create an algorithm for query routing
size of the network is set to 1024 peers, and the clusterimfpich has the property of a low ratio between network traffic
coefficient of the network is set to 1. and quantity of results. Therefore, we do not rely on precision
Content distribution. The content is modeled by utiliz- and recall, but employ the following metrics instead:

ing the ACM Computing Classification System [16] as the , Resource usage defined as the number of links traveled
underlying meta-data vocabulary. The ACM Computing Clas-  for each query within a given period of time.

sification System is a taxonomy consisting of 1473 concepts, Hit rate is defined as the number of resources found for
for the domain of scientific literature in the field of computer  each query within a given period of time.

science. Each resource is annotated with one keyword, i.e., Efficiencyis the ratio of resource usage to hit rate. If
each resource is an instance of one leaf concept from the we divide the number of links traveled by the number
taxonomy. In total, the ACM Computing Classification System  of resources found, we get the average number of links

taxonomy contains 910 leaf concepts. In order to represent traveled to find one resource, which is the most practical
each research topic equally, the same number of resources is metric.

created for each leaf concept. Each peer stores on avergfigiously, these metrics have the drawback that the recall
30 resources. In real-world settings, the available resources inyhich measures the ratio between resources found and
a peer-to-peer network are not randomly distributed amoRgsqyrces present in the network — is not known. The value
the peers. Instead, patterns in the data can be observed s{gteyrecision, which measures the ratio between correctly
the interests of the peers are not uniform, but each pegf§ng resources and false positives, is always 100% since the

concentrates on one or a few topics it has special interegisanT algorithm does not produce false positives.
in. In the application scenario of researchers, the special

interests are certain research areas. Modeling research 3B rormance evaluation
with the leaf concepts from the taxonomy would lead to very’ ) ) .
narrow interests. Therefore, the sub-concepts of a third-levelfFOr performance evaluation, th&@ANT algorithm is com-
concept of the taxonomy are facilitated for modeling a researBfred against the well-knowirrandom walkeapproach [19].
area. There are 177 third-level concepts in the taxonon‘g. random walker is similar to a forward ant, except from
The assumption is that each peer is an expert on a certflf fact that it does not rely on routing tables, but instead
research area and for this reason, on average 60% of fpakes a random decision about which outgoing link to choose
resources in his or her repository are instances of one particdfaithe link selection procedure. If resources are found, the
research area. On average, another 20% of the resources/&#er sends an information message back to the querying
related to another research area. The remaining 20% of €M, similar to a backward ant, and walks on. There are two
resources are instances of random leaf concepts. Note fffigurable parametergiis the number of walkers per query,
the hierarchical relationships between the concepts in tRBd a time-to-live parametdrT'L defines the timeout for the
taxonomy are used only for modeling the research areas, Mkerss The time horizon for the experllment is set to 5000
not for query routing. This topic has been addressed in [ﬂ%ne umt_s. The parameter values shown in Tablt_s | are used for
together with an evaluation of the impact of different conteff® configurable parameters of theMsANT algorithm. Both
distributions on the performance of the algorithm. the minResourcevariation and themaxResultsariation are
Query distribution. In a real-world scenario, the queryevaluated. In order to provide for comparison fairness,
distribution would be power-law. For simplicity, in this ex- « both algorithms use the same setup as described in
periment an uniform query distribution is assumed. A ticker  Sec. IV-A,
clock at each peer is used, and the probability that a peew the time-to-live parameters are set to an equal value, and
issues a query within one time unit is set to 0.1. Each querye the parameter settings for the algorithms are set in such
consists of a randomly selected leaf concept from the ACM a way that — in total — the agents of both algorithms are

Computing Classification System taxonomy. allowed to travel a comparable number of links.
Consequently, the parameters for theandom walkeralgo-
B. Metrics rithm are set tok = 2 and TTL = 15. The results of the

Several scientific articles about peer-to-peer systems use $Rg'Parison are shown in Fig. 2 to Fig. 4. Note that Fig. 2
metrics of precision and recall [18] known from informatiodncludes the resource usage of both forward and backward

retrieval for their evaluation. The drawback of relying on thesdts/agents for both algorithms. An evaluation of the impact
of varying the values used for the control parameters on the

performance of the algorithm can be found in [20].

P evaporation factor 0.07 It can be seen that both variations of the\\NT algorithm

ttlmaz | timeout of forward ants 15

0. weight of exploiting vs. exploring strategy| 0.85 outperform thek-random walk_ere}pproach. On average, the

Tmaz | Maximum number of resources 10 latter needs29.7 hops for retrieving0.79 results per query.

wq weight of resource quantity vs. link costs| 0.5 This means that approximateBi.3 hops are necessary for
TABLE | retrieving one appropriate resource. Sincekfrandom walker

PARAMETER VALUES CHOSEN FOR THESEMANT ALGORITHM approach does not include any kind of optimization, the

performance values do not improve but stay nearly constant



35

optimization problems are solved. In case of thaxResults
30 1 variation, the hit rate is maximized. After 5000 time units, on

» W average2.9 resources per query are found (Fig. 3). However,

the resource usage decreases only slightly in comparison to the
° M k-random walkerreference values. Afte5000 time units, on

15 average28.7 hops are necessary for query routing (Fig. 2).
On the other hand, employing theinResourcevariation
minimizes the resource usage of the ants. In this case, after

resource usage

—— SemAnt minResources

s = SemAnt maxResults 5000 time units16.9 hops are needed on average (Fig. 2) for
0 ‘ ‘ ‘ — kerandom valker finding on averagé.9 resources per query (Fig. 3). Note that
0 1000 2000 3000 4000 5000 in Fig. 2, the dotted curve for resource usage between time

time unit 0 and time unit2500 in the minResourcesariation does

. . . . not seem to decline as rapidly, but considering that (1) the
Fig. 2. Resource usage comparison betweem/ANT using theminRe- . . . .
sourcesvariation, SMANT using themaxResultsvariation, andk-random hit rate increases at the same time and that (2) hit rate has an

walker effect on resource usage, the decline of the curve is significant.
The effects of minimizing resource usage and maximizing hit
3 T Semant minResaurces rate depending on the variation are even more present if a
J] 2 o maxdesuls higher value for parametéti,,, ... is used (see [12] for figures).

However, as also shown in [12], employing a higher value for
ttla has a negative effect on performance.

Since hit rate and resource usage depend on each other,
the best way of comparing the variations against each other
is to use the metric of efficiency (Fig. 4). It can be seen
that in the minResourcevariation less hops are necessary
to retrieve one resource in comparison to timaxResults
‘ ‘ ‘ ‘ variation. These results show that for the overall performance
0 1000 2000 3000 4000 5000 of the system, theninResourcevariation has a higher benefit

time in terms of a lower number of hops traveled for retrieving
one resource. The average difference over the complete time
span is is approximately.13 hops per query1R.51 hops on
averagel1.38 hops on average). The cause for this difference
s can be explained as follows. In theaxResultsariation, when
0] the forward ants continue searching after they found the first
T T A AN AN appropriate peer, they tend to stay in the neighborhood of
the peer they already found and try to go back to it because
the pheromone trails indicate that there is an appropriate peer
nearby. However, this wastes resources since forwards ants
are not allowed to visit the same peer twice. For this reason,
the minResourcevariation of the EMANT algorithm is more
1 ; favorable than thenaxResultsariation.

Fig. 3. Hit rate comparison betweereE@ANT using the minResources
variation, EMANT using themaxResultyvariation, andk-random walker

35 4

30 4

25 4

20

efficiency

——SemAnt mi es —#— SemAnt Results —k-random walker|

0 1000 2000 3000 4000 5000 D. Exploration versus Exploitation
time

Now we address the exploitation-exploration dilemma by

Fig. 4. Efficiency comparison betweerEANT using theminResources acquiring the simulation results for several different settings
variation, £MANT using themaxResultvariation, andk-random walker for parametenv,.. Since in the previous experiment it turned

out to perform better, theninResourcevariation is employed.

For the parameters other tham, the settings described in
over time. On the contrary, theeE®IANT algorithm — which Sec. IV-C are used. The results of the comparison are given
in the start-up phase, where all the pheromone trails store therig. 5 to Fig. 7. Fig. 5 shows that in the start-up phase, the
same amount of pheromone, shows only slightly better resulég&source usage is proportional to the ratio between exploring
as thek-random walkereference — optimizes its performanceand exploiting strategy. The more forward ants employ the
Especially between time uni0 and time unit1000, the exploring strategy, the higher the amount of messages in the
performance values improve significantly. Abald00 time network. Consequently, for the overall load of the system it
units are necessary to reach a converged phase in which itheetter to employ a low rate of exploring forward ants, but
results are nearly stable and show only slight improvementsiso a high rate, e.gw. = 0.05, is feasible. Although in this

The figures clearly indicate that — depending on whictase the resource usage at time unis much higher 168.4

variation of the &MANT algorithm used — two different hops on average) than in case of a low rate (@7 hops on
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Fig. 5. Resource usage oEBANT using theminResourcevariation when Fig. 7. Log-log plot of the efficiency of @WANT using theminResources
varying the value used for parametet. Between time uniD and time unit  variation for parametetv. € [0.05,0.95]. A higher rate of exploring ants

1500, resource usage is dependent on parameter results in slightly less efficient results in the start-up phase, but improves
the performance in the converged phase. The curves for the other settings of
35 parameterw. lie in between those shown and are omitted for clarity. Note

. that the time axis is stretched by factr
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0.05 0.15 0.25 0.35 0.45 mean
11.43 | 11.31 11.33 | 11.45 | 11.25 11, 38619209
0.55 0.65 0.75 0.85 0.95 standard deviation
11.35 | 11.37 | 11.42 | 11.38 | 11.57 0,087454343
TABLE I
AVERAGE EFFICIENCY OFSEMANT USING THE MINREeSOUICeESARIATION
WHEN VARYING THE VALUE USED FOR PARAMETERW,
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Fig. 6. Hit rate of ®MANT using theminResourcesariation when varying The reason for this effect lies in the design of the exploring
the value used for parameter.. The curves converge to the same limit.  strategy. It can be explained by the fact that, although the
forward ants choose outgoing links that are not currently

) known as the best ones, they still make this decision in
average forw, = 0.95), still not even half as many resource$yronortion to their desirability.

are consumed as when using broadcast with a time-to-live
parameter of4. The hit rate is dependent on parameier
not only in the start-up phase, but also in the converged phase
(Fig. 6). The more exploring forward ants in the network, the We identified three areas in which work related to ours
better the pheromone trails and, consequently, the higher ttam be found. First, the exploitation-exploration dilemma has
hit rate. The best result can be reached for setiipg= 0.05. been discussed in several contexts, such as in the case of
After 5000 time units,2.24 resources on average are found ifioraging bees [21], in economic systems [22], in software
this case. The worst possible result9@ resources on averageproduct development [23], and others. Second, there is related
after 5000 time units) is obtained for settingpe = 0.95. work on ant algorithms in peer-to-peer networks.
However, the difference in absolute numbers is marginal andAnthill [24] is a open source framework for the design,
the curves converge to the same limit over time. implementation, and evaluation of ant algorithms in peer-to-
Combining the two metrics shows that, independently fropeer networks. There are two applications based on the Anthill
the ratio between exploring and exploiting strategy, the overdamework. Gnutant [24] is a file-sharing application. In Gnu-
efficiency in terms of hops necessary for answering a queryt@t, each file is identified by an unique file identifier and as-
similar for every setting of parameter,. Although a higher sociated with meta-data comprised of textual keywords. Three
rate of exploring ants gives slightly less efficient results idifferent types of ants are responsible (1) for constructing a
the start-up phase, at the same time it moderately improwdistributed index that contains URLS pointing to shared files
the performance in the converged phase. Fig. 7 highlights tlaisd (2) for managing routing tables. If a user adds a new file to
by depicting the efficiency results fan, = 0.05 andw, = a nest, onénsertAntis generated for each keyword of the file.
0.95 plotted in log-log scale. Table Il — showing the averagmsertAnts propagate the presence of new files to the network
efficiency over the complete time span for every setting @fy updating the distributed index. Gnutant utilizes hashed
parameterw. — reveals that those two effects are in balandesyword routing based on the Secure Hash Algorithm (SHA).
with each other. The mean of all values 1$.39 hops per Each index entry contains the hash value of a keyword together
guery, and the low standard deviation ®087 indicates that with a set of nests that are likely to store files associated with
there are no significant differences in average efficiency whre given keywordSearchAntsre generated upon user queries

V. RELATED WORK



and exploit the information stored in the routing tables in orde|s] Elke Michimayr, “Ant Algorithms for Search in Unstructured Peer-
to find files that match the queries’ keywords. If no index

entry that exactly matches the query’s hash value exists, the
SearchAnt selects the hash value that most closely matches the Marco Dorigo and Gianni Di CaroNew Ideas in Optimizatigrchapter
hash value of the query. If a SearchAnt localizes an appropriate
file, it generates &ReplyAntthat immediately returns to the ;
source nest and informs the user about the result of his or
her query. Messor [25] implements load-balancing for peerf]
to-peer networks based on the necrophoric behavior of ants.
Schelfthout and Holvoet [26] evaluate whether the principlg9]
of synthetic pheromone can be employed for coordination in

represent one of the keywords in the query. In addition,
an evaporation feature is integrated. Handt [27] tackles the
problem of search in peer-to-peer networks by inverting Fl3] David E. Goldberg and Kalyanmoy Deb, “A Comparative Analysis of
Instead of peers issuing queries, the annotated resources movesSelection Schemes Used in Genetic Algorithms,” Aroceedings of
through the network and lay/follow pheromone trails that guide
them. In addition, the peers re-order according to their intereﬁt;]
which are determined by creating node profiles out of the
meta-data their locally stored resources are marked-up withto]
Third and finally, there is work addressing the applicability g

of biological processes other than ant-based methods to peer-

to-peer networks, e.g., by Babaoglu et al. [28], who apply the
principles of proliferation to search in unstructured overla{)iﬂ
networks.

(18]

VI. CONCLUSION
19]

In this paper we evaluated the effectiveness of the self-
organizing and emergent behavior observed from natural a3
for query routing in peer-to-peer networks. We specified two
possible variations of theEsMANT algorithm based on th&nt
Colony Optimizationmeta-heuristic and experimentally evall21]
uated the performance of both variations in order to identify
the superior one. After that, we addressed the exploration-
exploitation-dilemma by showing that the overall efficiency df?l
the SEMANT algorithm’s search process is not influenced by
the parameter value chosen for the ratio between exploring and
exploiting forwards ants. This finding is important, because [#3]
simplifies the configuration of the algorithm and makes its
behavior more easily predictable.
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