
Applying Ant-based Multi-Agent Systems to Query
Routing in Distributed Environments

Elke Michlmayr, Arno Pany, Sabine Graf

Abstract— This paper presents SemAnt, a novel ant-based
multi-agent system designed for distributed query routing.
While the ant metaphor has been successfully applied to net-
work routing both in wireless and fixed networks, little is yet
known about its applicability to the task of query routing
in distributed environments. We point out the similarities
and dissimilarities between routing of data packets and rout-
ing of queries, and we present the design of SemAnt, which
is based on the Ant Colony Optimization meta-heuristic.
For experimental evaluation, we deploy the algorithm in a
peer-to-peer environment with a real-world application sce-
nario and compare its performance against the well-known
k-random walker approach. As we will show, the benefits
of SemAnt are that the routes for queries are optimized ac-
cording to their popularity, and that the algorithm is highly
suitable for volatile environments.

Index Terms—Cooperative Artificial Intelligence Systems,
Distributed Artificial Intelligence, Multi-Agent Systems,
Peer-to-Peer Networks, Ant Colony Optimization

I. Introduction

Network routing refers to the process of selecting the
next hop for an incoming data packet being forwarded
based on information held in routing tables. Ant-based
trail-laying and trail-following algorithms have successfully
been applied to routing in distributed systems. Based
on the Ant Colony Optimization (ACO) meta-heuristic [1]
proposed by Di Caro and Dorigo in 1999, a dedicated sub-
set of ant algorithms was specifically designed for manag-
ing routing tables in telecommunication networks [2] and in
mobile ad-hoc networks [3]. Query routing in distributed
environments is the task of finding one or more appropriate
destinations for a given query. Each node in the network
manages an information repository that can be accessed by
the other nodes. Each node issues queries to the network.
All nodes collaborate to answer the queries. The aim is
to maximize the number and the quality of query results
while minimizing the overhead necessary for management
of routing the queries.

This research has been funded by the Austrian Federal Ministry for
Education, Science, and Culture (bm:bwk), and the European Social
Fund (ESF) under grant 31.963/46-VII/9/2002.

Elke Michlmayr is with the Women’s Postgraduate College for In-
ternet Technologies (WIT), Institute for Software Technology and In-
teractive Systems, Vienna University of Technology, Favoritenstrasse
9-11/E188, 1040 Vienna, Austria (telephone: 0043 1 58801 18816,
email: michlmayr@wit.tuwien.ac.at).

Arno Pany is currently a master’s student at the Institute for
Software Technology and Interactive Systems, Vienna University of
Technology, Favoritenstrasse 9-11/E188, 1040 Vienna, Austria (email:
e9425000@stud1.tuwien.ac.at).

Sabine Graf is with the Women’s Postgraduate College for Inter-
net Technologies (WIT), Institute for Software Technology and In-
teractive Systems, Vienna University of Technology, Favoritenstrasse
9-11/E188, 1040 Vienna, Austria (telephone: 0043 1 58801 18817,
email: graf@wit.tuwien.ac.at).

Different approaches for query routing in distributed en-
vironments exist, ranging from simple broadcasting tech-
niques to sophisticated methods that exploit stored infor-
mation about user-generated queries in the past in order to
predict – based on a given query’s keywords – which node
is capable of answering it. Ant-based methods are based on
the same basic principle. They have proven to perform well
for network routing [4] but have not yet been applied to the
task of query routing. The differences between routing of
data packets and query routing are as follows. First, when
routing data packets, the destination address of a packet
is known in advance. In query routing, it is not. Second,
network routing does not account for the contents of data
packets. In query routing, it is of benefit to consider the
keywords of a query when deciding which node to send the
query to. Despite these differences, we assume ant-based
routing techniques to be suitable for query routing in dis-
tributed environments for the reasons of decentralization
and adaptivity. Ants are autonomous agents that travel
through a network and spread pheromone on their paths.
At each node, they examine the pheromone amounts al-
ready spread on the available outgoing links in order to de-
cide which link to follow. Communication among ants is in-
direct and exclusively based on modifications of pheromone
trails. Hence, ant algorithms do not require any global
knowledge about the network and can therefore be applied
in peer-to-peer environments. Since strategies for reacting
to network topology changes exist, ant algorithms are suit-
able for volatile networks, where nodes can fail/leave or
join at any time. The strategies to cope with these dynam-
ics consist of adapting the pheromone trails in the network
according to changes in topology.

The paper is organized as follows. Section II describes
ant-based methods for routing. Section III discusses pre-
vious research on employing ant-based methods for query
routing. Section IV gives a detailed description of SemAnt,
the proposed ant algorithm. Section V presents experimen-
tal results that show the performance of the algorithm.

II. Ant-based algorithms for Routing

In this section we describe ant algorithms, which are in-
spired by the collective foraging behavior of specific ant
species. Summarized by a meta-heuristic called Ant Colony
Optimization [1], several algorithms exist that model and
exploit this behavior for solving graph-based NP-hard com-
binatorial optimization problems. In these algorithms, af-
ter initializing each edge of the problem graph with a very
small amount of pheromone and defining each ant’s start-
ing node, a small number of ants runs for a large number of

iterations. For every iteration, each ant determines a path
through the graph from its starting to its destination node
by applying a so-called random proportional transition rule
at each decision point. This rule derives which of all pos-
sible next nodes to choose, based on (1) the specific edge’s
amount of pheromone and (2) its costs. When the ant ar-
rives at the destination node, the total costs of the newly
found solution are calculated. After all ants have found a
solution, the pheromone trail update rule is applied for each
edge which is part of the solution. The amount of newly
dropped pheromone depends on the quality of the solution.
In each iteration, some pheromone evaporates according to
an evaporation factor.

The most prominent variant of ant algorithms for routing
is AntNet [4] by Di Caro and Dorigo. AntNet is designed
for packet-switched networks and its pheromone updating
approach is appropriate for both symmetric and asymmet-
ric networks. In AntNet, ants collaborate in building rout-
ing tables that adapt to current traffic in the network with
the aim of optimizing the performance of the entire net-
work. The network is mapped on a directed weighted
graph with N nodes. Each node manages a routing ta-
ble that stores information about the outgoing links and
their amount of pheromone. The edges of the graph are
the links between nodes and are viewed as bit pipes having
a certain cost – bandwidth and transmission delay – that
depends on the current load of this link. The routing ta-
bles are matrices of size N × l, where l is the number of
outgoing links. At startup, all routing tables are initial-
ized with a uniform distribution of all reachable nodes. At
regular intervals, each node generates a so-called forward
ant that builds a path to a randomly selected destination
node. Again, the decision about which node to choose next
is based on (1) the link costs of the outgoing links and (2)
the amount of pheromone already dropped on these link in
previous iterations. When a forward ant Fsd launched at
a source node Ns has reached its randomly selected desti-
nation node Nd and calculates the total costs of the solu-
tion, it cannot update the pheromone trails directly. Since
the problem is distributed, it has to generate a backward
ant Bds that will return to node Ns through the same path
that was used by the forward ant. The backward ant is
responsible for updating the pheromone trail according to
the information gathered by the forward ant by altering the
routing table of each visited node. The backward ants up-
date all entries corresponding to destination node Nd. For
preventing cycles, each forward ant Fsd manages a stack
of nodes already visited. If it detects a cycle because it is
forced to go to an already visited node Nv since all possi-
ble next nodes were already visited, it calculates the time
span t it spent inside the circle. If t is greater than 50% of
the ant’s total lifetime, Fsd is terminated. If it is less, Fsd

removes all nodes that are part of the cycle from its stack
and continues traveling at node Nv.

The main reason that makes it impossible to apply
AntNet to query routing in peer-to-peer environments is
that it needs information about all existing nodes in the
network for choosing destination nodes.

III. Related work

In the following we give an overview of existing tech-
niques for query routing in peer-to-peer networks. In addi-
tion, we discuss the relationship between multi-agent sys-
tems and peer-to-peer networks, and we evaluate previous
attempts to apply ant-based methods for query routing in
peer-to-peer networks.

Peer-to-peer systems are ”distributed systems consisting
of interconnected nodes able to self-organize into network
topologies with the purpose of sharing resources such as
content [...] without requiring the intermediation or sup-
port of a global centralized server or authority” [5]. Differ-
ent approaches for query routing in peer-to-peer networks
exist (see [6] for a survey). The most basic technique is to
use a central index of all documents. The drawback of this
approach is that all nodes in the network have to register
their contents at a central node. Another basic technique is
not to use indexes at all, but to broadcast each query to the
network within a limited scope. The scope of the broad-
cast is defined by the number of hops that lie between the
querying and the answering node. Both techniques provide
only limited scalability.

Sophisticated approaches employ indexes that are dis-
tributed among the nodes to allow for fault tolerance and
scalability. The first category of these approaches relies
on distributed hash tables (DHT) for creating structured
overlay networks. The idea is to assign keys to all con-
tent items and to distribute the ownership of the key space
among all the nodes in the network. According to its key,
each content item is copied to the node that is responsible
for the key. Hence, content lookup by key is efficient. The
shortcoming is that content needs to be relocated in or-
der to be found. The second category of approaches relies
on the unstructured overlay network that nodes organize
into when joining the system, and does not relocate the
content provided. Instead, the user-generated queries and
answers that are sent across the network are observed and
this information is stored in local indexes. The predictions
about which node is capable of answering a certain query
are based on functions that rank the information in the in-
dexes according to their relevance to the query in order to
select the node that is most likely to contain content that
satisfies the query. The ranking functions are based on a
stochastic models [7], social metaphors [8], or on assump-
tions about the content distribution in the network [9]. Our
approach falls within this category as well. It is a stochas-
tic model based on the ant metaphor, and hence a multi-
agent system. The characteristics of multi-agent systems
are that each agent has incomplete information or capabil-
ities for solving the problem, that there is no system global
control, that data are decentralized and that computation
is asynchronous [10]. Koubarakis points out that the basic
concepts underlying multi-agent systems and peer-to-peer
networks are very similar [11], and that peer-to-peer net-
works can provide the infrastructure for deploying multi-
agent systems. Babaoglu et al. [12] argue for the applica-
bility of certain biological processes to distributed environ-
ments, particularly to unstructured overlay networks.

The project most closely related to our work is
Anthill [13], a Java-based open source framework for the
design, implementation, and evaluation of ant algorithms
in peer-to-peer networks. An Anthill system is an overlay
network of interconnected nests (peers). The Anthill API
provides a basic set of actions for ants that enables them to
travel from nest to nest, and to interact with the services
provided by nests. The ant algorithm is not specified by
Anthill, but must be designed by the user of the framework
according to the application scenario.

IV. Description of the SemAnt Algorithm

In this section, the proposed ant-based algorithm Sem-
Ant is described. Section IV-A presents its application
scenario, and Section IV-B gives a high-level overview of
the algorithm. In Section IV-C, we describe the data that
needs to be stored at each node. In Section IV-D, we justify
the design rationale of the algorithm’s routing strategy. In
Section IV-E, we provide a step-by-step description of the
algorithm. Finally, Section IV-F illustrates the evaporation
rule used.

A. Application scenario

The application scenario for the algorithm is that of a
distributed search engine where each node (1) manages a
repository of documents and (2) offers the content of its
repository to other nodes. In addition to offering docu-
ments, nodes pose queries to the network. The system
provides for keyword-based search based on meta-data [14].

As described in Section II, foraging ants find the short-
est path to one kind of resource, and all pheromone re-
fer to that kind of resource. In our application scenario,
each keyword refers to a different kind of resource. Con-
sequently, the network must be independently optimized
for all possible keywords. This goal can be reached by em-
ploying multiple pheromone types as introduced by Sim et
al. [15]. Each keyword is represented by a corresponding
type of pheromone. To restrict the maximum number of
pheromone types, we constrain the document meta-data
vocabulary to a controlled vocabulary, e.g, the concepts of
a taxonomy or an ontology. Each document can be an in-
stance of one or more concepts. A query can consist of one
or more keywords c1, ..., cn. As described above, the set
of allowed keywords is limited to the concepts of the con-
trolled vocabulary. Multiple keywords are connected using
the boolean operator OR. A document is an appropriate re-
sult for a given query Q if it is classified to be an instance
of one of the concepts that are keywords of the query Q.

B. Overview of the algorithm

For each query, the shortest path through the network
must be found that leads from the querying node to a desti-
nation node offering information matching the query. The
more often a query is requested, the stronger its paths
should be optimized. Thus, it is reasonable to represent
queries as ants. This guarantees that the degree of opti-
mization for a certain query directly depends on its pop-
ularity. If a query is common, its pheromone trails will

converge and lead to the nodes that offer the most results
for the given query.

We adopt the AntNet strategy for supporting distributed
problems by forward ants and backward ants as well as
AntNet’s strategy for preventing cycles. In AntNet, for-
ward ants terminate their travel through the network when
they have reached their well-defined destination node. This
behavior can not be transferred to SemAnt, since in our
scenario the forward ant’s task is to find an unknown des-
tination node that in the worst case does not even exist. To
specify the point of time at which a forward ant terminates
its travel, we define a timeout parameter Tmax that is the
maximum lifetime of a forward ant.

C. Data structures

At each node Ni, pheromone trails are maintained in a
table τ of size C×n, where C is the size of the controlled vo-
cabulary and n is the number of node Ni’s outgoing links to
neighbor nodes. Each τcu stores the amount of pheromone
type c dropped at the link from node Ni to node Nnu , for
each concept c and each neighbor node Nnu

. At startup,
all table entries are initialized with the same small value
τinit = 0.009. In addition, each node manages a table η
that stores link costs to neighbor nodes Nnu

. Each param-
eter ηu is the inverse value 1

lcu
of the cost lcu for sending

an ant from node Ni to node Nnu
.

D. Routing strategy

The algorithm’s routing strategy is defined in the tran-
sition rule. After a thorough evaluation of existing ap-
proaches, we decided against using AntNet’s transition
rule, since it aims to optimize the path to one specific desti-
nation node only. We also decided against AntHocNet’s [3]
broadcasting strategy, since broadcast consumes an exces-
sive amount of network resources. Instead, we select Ant
Colony System’s transition rule [16] and adapt it to our
application scenario as described below.

The Ant Colony System transition rule consists of two
strategies that supplement each other. Based on probabil-
ity we, each ant decides whether it applies an exploiting or
an exploring strategy. In the exploiting strategy, the ant de-
termines the quality of the links depending on the amounts
of pheromone and the link costs and always selects the link
with the highest quality. The exploring strategy encourages
ants to discover new paths. This is achieved by deriving
a goodness value pnu

for each neighbor node Nnu
not al-

ready visited, and by applying the roulette wheel selection
technique [17] to select one of the nodes. Both strategies
are described in Section IV-E.

We utilize an adaptation of the roulette wheel selection
technique: Each pnu

is separately placed on the contin-
uum between 0 and 1, and for each pnu

a random value q
is calculated for deciding whether Nnu

should be selected.
This strategy allows more than one node to be selected to
account for the fact that there are multiple possible desti-
nation nodes which contain answers for a query. To ensure
that at least one node will be selected, we fall back to the

exploiting strategy in case the exploring strategy does not
to select any node.

E. Step-by-step description of the algorithm

A step-by-step description of the algorithm follows. Con-
sider a query Q containing a keyword c issued at a
node NQ. The following seven steps are necessary for an-
swering query Q:

Step 1 Check the document repository of node NQ. If
any results are found, present them to the user. If the
number of documents found is less than Dmax, go to step 2.
If the number of documents found is greater than Dmax,
terminate the algorithm.

Step 2 At node NQ, create a forward ant FQ with start-
ing time TFstart and timeout Tmax responsible for retriev-
ing results for query Q. Add node NQ to forward ant FQ’s
stack of already visited nodes S(FQ), and initialize the list
LC(FQ) that stores the link costs of all links used by for-
ward ant FQ.

Step 3 Apply the transition rule in order to decide which
outgoing link(s) the forward ant FQ should choose. As de-
scribed in Section IV-D, the decision about which strategy
to used is based on probability we. In case the exploiting
strategy is used, the forward ant FQ applies the transition
rule shown in (1) to select the best neighbor node Nj .

j = arg maxu∈U∧u/∈S(F Q)

(
[τcu] · [ηu]β

)
, (1)

where β is a constant, U is the set of neighbor nodes of Ni,
and S(FQ) is the set of nodes already visited.

In case the forward ant FQ utilizes the exploring strat-
egy, the transition rule shown in (2) and (3) is applied for
each neighbor node Nj in order to decide whether node Nj

should be selected.

pj =
[τcj] · [ηj]

β∑
u∈U∧u/∈S(F Q)

(
[τcu] · [ηu]β

) (2)

and

GOj =
{

1 if q ≤ pj ∧ j ∈ U ∧ j /∈ S(FQ)
0 else , (3)

where q is a random value, q ∈ [0, 1], and∑
j∈U∧j /∈S(F Q)

pj = 1 (4)

In (3), if GOj = 1, the forward ant FQ creates a clone FQ
c

of itself and sends the clone FQ
c to node Nj .

Step 4 Upon arrival at node Nj , check if this node
was already visited by a clone FQ

c . If so, terminate for-
ward ant FQ. Otherwise, check the document repository
of node Nj for documents d that are results for query Q
and add the identifiers of all matching documents to the
set D. If there are no results, continue at step 6.

Step 5 If D 6= {}, generate a backward ant BQ and pass
it D and ND, which is the node that stores D. In order to
find its way back to the querying node NQ, the backward

ant BQ needs a copy the stack data recorded by forward
ant FQ. This stack contains all visited nodes S(FQ) and all
recorded link costs LC(FQ). In the first step, the backward
ant BQ calculates the sum of all entries in LC(FQ) to
get the total link costs TD for the path from node NQ to
node ND. After that, the backward ant BQ travels back
hop-by-hop according to the information stored in S(FQ)
until it arrives at querying node NQ.

At each intermediate node, backward ant BQ is responsi-
ble for two different tasks. First, it updates the link cost ηj

to the entry in LC(FQ). Second, it drops pheromone by
applying the pheromone trail update rule. The pheromone
trail update rule is adopted from [16] and defined as given
in (5) and (6).

τcj ← τcj + Z, (5)

where

Z = wd ·
|D|

Dmax
+ (1− wd) ·

Tmax

2 · TD
(6)

In (6), the amount Z of pheromone depends on the qual-
ity of the solution, that is, the number of documents found
and the total link costs. wd weights the influence of doc-
ument quantities and link costs. Amount Z is derived by
comparing the goodness of the found solution to an opti-
mal one. For the optimal solution, we set the optimal value
for a path’s total link costs to 1

2 · Tmax, and the optimal
number of documents to Dmax.

Step 6 Add node Ni to forward ant FQ’s stack of already
visited nodes S(FQ) and add the cost of the last used link
to list LC(FQ).

Step 7 If TFstart + Tmax < CurrentT ime, continue at
step 3. Otherwise, if forward ant FQ reached its maximum
lifetime Tmax, terminate it.

Note that unlike in AntNet, a forward ant is not termi-
nated directly after it created a backward ant. Instead, it
continues its travel until the maximum lifetime is reached,
Hence, a single forward ant can generate multiple back-
ward ants. Since the maximum lifetime of a forward ant
is Tmax, all backward ants will arrive within a time inter-
val of 2 ∗ Tmax. As soon as a backward ant arrives at the
querying node NQ, the result documents D are presented
to the user. If the user decides to download a document d,
a direct connection between node NQ and node ND that
stores d is established and the document is retrieved from
node ND.

F. Evaporation

Each node applies the evaporation rule shown in (7) in
a predefined interval te for each link to neighbor node Nnu

and each concept c, where the amount of evaporating
pheromone is controlled by parameter ρ ∈ [0, 1].

τcu ← (1− ρ) · τcu (7)

This rule is adopted from [16] without any modifications.
Note that we do not apply a local pheromone trail up-
date rule as proposed in [16], since not only the ant that

48

50

52

54

56

58

60

62

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time

re
so

ur
ce

 u
sa

ge

SemAnt
k-random

Fig. 1. Resource usage (y-axis) over time (x-axis). k-random walker
with k=2 and TTL=25, SemAnt with settings shown in Table I

found the best solution of an iteration but all backward
ants spread pheromone.

V. Simulation and Results

We evaluate the design of the SemAnt algorithm by sim-
ulating a peer-to-peer system with real-world settings. The
system aims to support cooperation between researchers in
computer science by allowing to share documents.

The most important characteristics of a peer-to-peer sys-
tem are the network topology used, the distribution of
content, and the distribution of queries within the net-
work. The underlying network topology has significant ef-
fects on the performance of the search algorithm. Since
we deal with a community of researchers, we select a small
world [18] network topology for the experiment in order
to choose a realistic model for social networks. The size
of the network is set to 1024 nodes, and the clustering co-
efficient is set to 2. The link costs for all links are set
to 1. The content is modeled by utilizing the ACM Com-
puting Classification Systemas the underlying meta-data
vocabulary. Each document is annotated with one key-
word, i.e., each document is an instance of one leaf concept
from the taxonomy. We do not assign documents to nodes
randomly, but employ a more realistic model similar to [8].
In this model, each node is an expert on a certain research
area and therefore on average 60% of the documents in his
or her repository are instances of one particular research
area, and on average 20% of the documents are related to
another research area. The remaining documents are in-
stances of random leaf concepts. For modeling a research

TABLE I

Parameters of SemAnt

ρ evaporation factor 0.07
Tmax timeout of forward ants 25
we weight of exploiting vs. exploring

strategy
0.85

Dmax maximum number of documents 10
wd weight of document quantity vs.

link costs
0.5

β weight of link costs 1

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time

hi
t r

at
e

SemAnt
k-random

Fig. 2. Hit rate (y-axis) over time (x-axis). k-random walker with
k=2 and TTL=25, SemAnt with settings shown in Table I

area we facilitate the 177 third-level concepts of the taxon-
omy, together with their sub-concepts. For the distribution
of the concepts within the documents we use uniform dis-
tribution in order to represent each research area equally.
The distribution of documents among the nodes follows a
bell curve with a mean of 29.6 and a standard deviation of
12.15. In this setting, we assume that the network topol-
ogy and the document distribution do not change during
the simulation. For uniform distribution of queries within
the network, we use a ticker clock at each node. The prob-
ability that a node issues a query within one time unit is
set to 0.1. A query consists of a randomly selected leaf
concept.

For evaluation, we compare SemAnt against the well-
known k-random walker [19] algorithm described below.
The following metrics are used for evaluation. Resource
usage is defined as the number of links traveled for each
query within a given period of time. Hit rate is defined
as the number of documents found for each query within
a given period of time. Initial experiments were performed
to analyze the performance of SemAnt with various pa-
rameter settings. These experiments showed that resource
usage is highly dependent on the weight we. The more
ants employ the exploring strategy, the more traffic occurs
in the network, not necessarily leading to proportionally
better hit rates. The best trade-off between resource usage
and hit rate is given when setting parameter we to 0.85.
The parameter values chosen are shown in Table I. In or-
der to provide for comparison fairness, (1) both algorithms
use the same setup as described in Section V, (2) the time-
to-live parameters are set to an equal value, and (3) the
parameter settings for the algorithms are set in such a way
that – in total – the agents of both algorithms are allowed
to travel a comparable number of links. Consequently, the
parameters for the k-random walker algorithm are set to
k = 2 and TTL = 25. This means that two walkers travel
for 25 hops. At each node, they make a random decision
about which node to choose next. If documents are found,
the walker sends an information message back to the query-
ing node, similar to a backward ant, and walks on. After
25 hops, the walkers are terminated.

We let the experiment run for 10000 time units. The
results of the resource usage comparison between SemAnt

and k-random walker are shown in Fig. 1. Note that these
numbers include both forward and backward ants/agents.
The hit rate measurements are shown in Fig. 2. What
can be seen from these figures is that the performance of
the k-random walker algorithm stays constant. The rea-
son for that is that k-random walker does not include any
kind of optimization. On average, the agents travel 59.27
links for answering a query. The average number of re-
sult documents found for a query is 1.49 documents. On
the contrary, SemAnt steadily increases its performance by
storing information about queries and results in the past
in pheromone trails and by exploiting this information for
the routing decisions. In the starting phase of the experi-
ment, the agents have to travel 60.44 links in order to find
1.82 documents per query. After 1000 time units, these
numbers improve to 55.13 links traveled for retrieving 3.8
documents per query. The algorithm converges quite fast
and reaches its optimal performance after 2000 time units.
The average hit rate goes up to 3.95 documents per query,
and resource usage decreases to 54.04 links traveled. Be-
tween time unit 2000 and time unit 10000, the results are
robust. The number of documents per query stays nearly
constant. Resource usage decreases slightly. After 10000
time units, the agents need to travel 53.02 links to find 3.95
documents per query.

VI. Conclusion

In this paper we proposed SemAnt, a novel algorithm
based on the Ant Colony Optimization meta-heuristic. The
algorithm was specifically designed for the task of query
routing in distributed environments, such as peer-to-peer
networks. We conducted an exhaustive study of the con-
stituents of ant-based methods to identify the ones that
are best qualified for deployment in peer-to-peer networks.
Those selected were then combined and customized to fit
our purposes. We conducted an experimental evaluation
of the proposed algorithm. Analyzing the results gained,
we can draw the conclusion that employing pheromone
trails for optimizing query routes is a meaningful approach:
SemAnt outperforms k-random walker both in terms of re-
source usage and hit rate. In addition, the algorithm con-
verges fast and shows robust results. However, more work
remains to be done, since our investigations were based
on the assumption that the network does not change over
time. Currently, we are working on an extension of the
algorithm that adds support for the inherent dynamics of
peer-to-peer networks.

We strongly believe that emergent and self-organizing
phenomena observed from nature are of great benefit for
the fields of artificial intelligence and computer science.
Most of these natural phenomena are not completely un-
derstood by now. Recently, biologists found empirical ev-
idence that ants do not only rely on pheromone for indi-
cating the shortest way to a food source, but also use a
special kind of stop-pheromone [20] to mark unrewarding
paths. We reckon that integrating stop-pheromone in ant-
based routing methods can improve performance.

References

[1] Marco Dorigo and Gianni Di Caro, New Ideas in Optimization,
chapter The Ant Colony Optimization Meta-Heuristic, pp. 11–
32, McGraw-Hill, 1999.

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, “Inspiration
for Optimization from Social Insect Behaviour,” Nature, vol.
406, pp. 39–42, July 2000.

[3] Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gam-
bardella, “AntHocNet: An Ant-based Hybrid Routing Algo-
rithm for Mobile and Ad Hoc Networks,” in Proceedings of Par-
allel Problem Solving from Nature. September 2004, vol. 3242 of
Lecture Notes in Computer Science, Springer.

[4] Gianni Di Caro and Marco Dorigo, “AntNet: Distributed Stig-
mergy Control for Communications Networks,” Journal of Ar-
tificial Intelligence Research (JAIR), vol. 9, pp. 317–365, July
1998.

[5] Stephanos Androutsellis-Theotokis and Diomidis Spinellis, “A
Survey of Peer-to-Peer Content Distribution Technologies,”
ACM Computing Surveys, vol. 36, no. 4, pp. 335–371, December
2004.

[6] John Risson and Tim Moors, “Survey of research towards robust
peer-to-peer networks: Search methods,” Tech. Rep., University
of New South Wales, September 2004.

[7] Brian F. Cooper, “Guiding Queries to Information Sources with
InfoBeacons,” in Middleware 2004, ACM/IFIP/USENIX In-
ternational Middleware Conference. October 2004, vol. 3231 of
Lecture Notes in Computer Science, pp. 59–78, Springer.

[8] Christoph Tempich, Steffen Staab, and Adrian Wranik, “RE-
MINDIN’: Semantic Query Routing in Peer-to-Peer Networks
based on Social Metaphors,” in Proceedings of the 13nd Inter-
national World Wide Web Conference (WWW2004), May 2004.

[9] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang, “Effi-
cient Content Location Using Interest-Based Locality in Peer-to-
Peer Systems,” in Proceedings of IEEE INFOCOM 2003, April
2003.

[10] Katia P. Sycara, “Multiagent systems,” AI Magazine, vol. 19,
no. 2, pp. 79–92, 1998.

[11] Manolis Koubarakis, “Multi-Agent Systems and P2P Comput-
ing: Methods, Systems and Challenges (Invited talk),” in Pro-
ceedings of the 7th International Workshop on Cooperative In-
formation Agents (CIA 2003). August 2003, vol. 2782 of Lecture
Notes in Artificial Intelligence, pp. 46–61, Springer.

[12] Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch, Gianni
Di Caro, Frederick Ducatelle, Luca Maria Gambardella, Niloy
Ganguly, Márk Jelasity, Roberto Montemanni, and Alberto
Montresor, “Design Patterns from Biology for Distributed Com-
puting,” in Proceedings of the European Conference on Complex
Systems (ECCS05), November 2005.

[13] Ozalp Babaoglu, Hein Meling, and Alberto Montresor, “Anthill:
A Framework for the Development of Agent-Based Peer-to-Peer
Systems,” in Proceedings of the 22nd International Confer-
ence on Distributed Computing Systems (ICDCS 02). July 2002,
IEEE.

[14] Sam Joseph and Takashige Hoshiai, “Decentralized meta-data
strategies: Effective peer-to-peer search,” IEICE Transactions
on Communications, vol. E86-B, no. 6, pp. 1740–1753, June
2003.

[15] Kwang Mong Sim and Weng Hong Sun, “Ant Colony Optimiza-
tion for Routing and Load-Balancing: Survey and New Direc-
tions,” IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, vol. 33, no. 5, pp. 560–572, 2003.

[16] Marco Dorigo and Luca Maria Gambardella, “Ant Colony Sys-
tem: A Cooperative Learning Approach to the Traveling Sales-
man Problem,” IEEE Transactions on Evolutionary Computa-
tion, vol. 1, pp. 53–66, 1997.

[17] David E. Goldberg and Kalyanmoy Deb, “A Comparative Anal-
ysis of Selection Schemes Used in Genetic Algorithms,” in Pro-
ceedings of the 1st Workshop on Foundations of Genetic Algo-
rithms, July 1990, pp. 69–93.

[18] Jon M. Kleinberg, “Navigation in a small world,” Nature, vol.
406, pp. 845, August 2000.

[19] Qin Lv, Pei Cao, Edith Cohen, and Scott Shenker, “Search
and replication in unstructured peer-to-peer networks,” in Pro-
ceedings of the 16th ACM Conference on Supercomputing, June
2002, pp. 84–95.

[20] Elva J. H. Robinson, Duncan E. Jackson, Mike Holcombe, and
Francis L. W. Ratnieks, “Insect communication: ’no entry’ sig-
nal in ant foraging,” Nature, vol. 438, pp. 442, November 2005.

