Analysing the Relationship between Learning Styles and Cognitive Traits

Sabine Graf
Vienna University of Technology
Austria
sabine.graf@ieee.org

Taiyu Lin
Massey University
New Zealand
taiyu.lin@gmail.com

Kinshuk
Athabasca University
Canada
kinshuk@ieee.org
Motivation

- Learners have different needs
 - Background knowledge
 - Learning goals
 - Learning styles
 - Cognitive traits
 - ...

- Incorporating these needs increase the learning progress, leads to better performance, and makes learning easier

→ Adaptive systems
For providing adaptivity, the needs and characteristics of learners have to be known first.

Student Modelling refers to the process of building and updating a student model, which includes relevant data about the student.

How to get this information?

Student Modelling

- Collaborative Student Modelling Approach
- Automatic Student Modelling Approach
Collaborative & Automatic Student Modelling

- **Collaborative Student Modelling**
 - Learners are asked to provide explicitly information about their needs and characteristics (e.g., filling out a questionnaire, performing a task, and so on)

- **Automatic Student Modelling**
 - The system infers the needs and characteristics automatically from the behaviour and actions of students in an online course
 - **Advantage:**
 - Students do not have additional effort
 - Approach is direct and free from the problem of inaccurate self-conceptions
 - **Drawback/Challenges:**
 - Getting enough reliable information to build a robust student model
 - Suggestions: use of additional sources
Aim

- Find mechanisms that use whatever information about the learner is available to get as much reliable information to build a more robust student model

- Investigate relationship between learning styles and cognitive traits
 - Additional data
 - Improve the identification process of learning styles and cognitive traits in adaptive learning environments
Relationship between Cognitive Traits and Learning Styles

Why shall we relate cognitive traits and learning styles?

- Case 1: Only one kind of information (CT or LS) can be detected in the system
 → Get some hints about the other one

 \[\text{CT} \rightarrow \sim \text{LS} \quad \text{or} \quad \text{LS} \rightarrow \sim \text{CT} \]

- Case 2: Both kinds of information are incorporated
 → The information about the one can be included in the identification process of the other and vice versa
 → The student model becomes more reliable
Felder-Silverman Learning Style Model

- Each learner has a preference on each of the four dimensions
- Dimensions:
 - Active – Reflective
 - learning by doing – learning by thinking things through
 - learning by discussing & group work – work alone
 - Sensing – Intuitive
 - concrete material – abstract material
 - more practical – more innovative and creative
 - patient and careful/not patient and careful with details
 - standard procedures – challenges
 - Visual – Verbal
 - learning from pictures – learning from words
 - Sequential – Global
 - learn in linear steps – learn in large leaps
 - good in using partial knowledge – need „big picture“
 - interested in details – interested in the overview
Cognitive Trait Model (CTM)

- Developed by Lin et al., 2003
- CTM is a student model that profiles learners according to their cognitive traits
- Includes cognitive traits such as
 - Working Memory Capacity
 - Inductive Reasoning Ability
 - ...
- Cognitive traits are more or less persistent
 - CTM can still be valid after a long period of time
 - CTM is domain independent and can be used in different learning environments, thus supporting life long learning
Working Memory Capacity (WMC)

- Also known as short-term memory
- Researchers do not agree on the structure of working memory, they agree that it consists of storage and operational sub-systems
- Allows us to keep active a limited amount of information (7+/−2 items) for a brief period of time
Relationship between FSLSM and WMC

Felder-Silverman Learning Style Model

- Sensing
- Intuitive
- Active
- Reflective
- Visual
- Verbal
- Sequential
- Global

Working Memory Capacity

- High
- Low
Literature Review

<table>
<thead>
<tr>
<th>Felder-Silverman Learning Style Dimensions</th>
<th>High WMC</th>
<th>Low WMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflective</td>
<td>Active</td>
<td></td>
</tr>
<tr>
<td>Beacham, Szumko, and Alty (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadwin, Kirby, and Woodhouse (1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolb (1984)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summervill (1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkin et al. (1977)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intuitive</td>
<td>Sensing</td>
<td></td>
</tr>
<tr>
<td>Bahar and Hansell (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis (1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ford and Chen (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hudson (1966)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinshuk and Lin (2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scandura (1973)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkin et al. (1977)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal or Visual</td>
<td>Visual</td>
<td></td>
</tr>
<tr>
<td>Beacham, Szumko, and Alty (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simmons and Singleton (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wey and Waugh (1993)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequential</td>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Beacham, Szumko, and Alty (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ford and Chen (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huai (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu and Reed (1994)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortimore (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witkin et al. (1977)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cognitive Styles</th>
<th>High WMC</th>
<th>Low WMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field-independent</td>
<td>Al-Naeme (1991)</td>
<td></td>
</tr>
<tr>
<td>Bahar and Hansell (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Banna (1987)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pascual-Leone (1970)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divergent</td>
<td>Convergent</td>
<td></td>
</tr>
<tr>
<td>Bahar and Hansell (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial</td>
<td>Holistic</td>
<td></td>
</tr>
<tr>
<td>Huai (2000)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relationship between FSLSM and WMC

Felder-Silverman Learning Style Model

- Sensing
- Intuitive
- Active
- Reflective
- Visual
- Verbal
- Sequential
- Global

Working Memory Capacity

- High
- Low
Study Design

- Analyse the relationship between learning styles and working memory capacity by the use of real data
- Compare results of analyses with results from literature review
- 297 students from Vienna University of Technology participated
- Students were asked to fill out a questionnaire in order to detect their learning styles and perform a psychometric test in order to measure their WMC
Identify Learning Styles according to FSLSM

- **Index of Learning Style (Felder & Soloman, 1997)**
 - Commonly used instrument for identifying learning styles according to FSLSM
 - 44-item questionnaire (11 questions per dimension)
 - Each learner is characterised by four values between +11 and -11
 - Questionnaire is available in German
Identifying working memory capacity

- From Simple Span Task to Web-OSpan Task
 - Simple Span Task: participants have to remember a series of stimulus items (digits or words)
 - Complex Span Task: Researchers agree that WMC covers also operational aspects rather than only storage aspects
 - Several versions exist, the operation word span task becomes the most popular task to measure WMC

- Web-OSpan Task (Lin, 2005)
 - Simple operations such as $1+(2*3) = 6$ are presented
 - Participant has to answer with true or false
 - After each operation, a word is displayed
 - After 2-6 operations, all words have to be typed in (in the correct order)
 - Overall 60 operations and 60 words
Identifying working memory capacity

- **Web-OSpan Task**
 - **Measures:**
 - Total number of correct recalled words
 - Total number of correct calculations (process measure)
 - Maximum set size the subject had the words correctly recalled (set size memory span)
 - Mean response latency
 - Partial correct memory span
 - WMC is measured by the number of correct recalled words
- Available in German
Method for Statistical Data Analysis

Data Cleansing
- Discard data from students who made more than 15 mistakes in the calculations or spend less than 5 minutes at ILS
 → 225 students
- Improved reliability of ILS through removing weak reliable questions
 - 1 question from active/reflective dimension
 - 1 question from sensing/intuitive dimension
 - 3 questions from visual/verbal dimension
 - 2 questions from sequential/global dimension
Method for Statistical Data Analysis

- **General Analysis**
 - Correlation analysis (Pearson’s & rank correlation)

- **In-depth Analysis**
 - Three groups were build for each dimension (e.g., active, balanced, reflective)
 - Chi-Square test was used to identify differences between the groups
 - If differences exist
 - Correlation analysis between WMC and the absolute values of ILS dimensions
 - Split data into two subsets (positive pole & balanced; negative pole and balanced)
 - For each subset, correlation analysis and group comparison methods were performed
In-depth Analysis for vis/ver dimension

- In-depth Analysis
 - For visual/verbal dimension:
 - Used correlation of frequencies in order to prove one-directional relationship
 - Separate visual and verbal learners
 - For each subset, the number of learners in WMC groups was calculated
 - Rank correlation analysis was performed in order to find a correlation between frequencies of WMC groups for e.g. verbal learners
 - Results of verbal and visual learners were compared
 - Same was done for the two subsets with high and low WMC learners
Results – Measures of Web-OSPAN task

- General Analysis
 - Correlation with total number of recalled words

<table>
<thead>
<tr>
<th>Measure</th>
<th>Corr. Value</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>set size memory span</td>
<td>tau=0.649</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>rho=0.757</td>
<td>0.0</td>
</tr>
<tr>
<td>partial correct memory span</td>
<td>tau=0.741</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>rho=0.883</td>
<td>0.0</td>
</tr>
<tr>
<td>Mean response time</td>
<td>r = -0.361</td>
<td>0.0</td>
</tr>
<tr>
<td>process measure</td>
<td>tau=0.191</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>rho=0.258</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Results – Active/Reflective Dimension

- General Analysis: No significant correlation
- In-depth Analysis
 - Chi-Square Test: significant result → difference between active/balanced/reflective group
 - Correlation analysis between WMC and the absolute act/ref values: significant negative results for WMC, set size memory span, partial correct memory span
 - balanced learning style <-> low WMC
 - strong active or reflective learning style <-> high WMC
 - Subset (active & balanced)
 - Correlation analysis: significant negative result for WMC, set size memory span, partial correct memory span, process measure
 - active learning styles <-> low WMC
 - balanced learning style <-> high WMC
 - Mann-Whitney U test (comparing low and high WMC over active/balanced values):
 - Low WMC -> active learning style
 - High WMC -> balanced learning style
 - Subset (reflective & balanced)
 - Correlation analysis: significant positive result for WMC (according to Spearman’s rho)
 - Reflective learning style -> low WMC
 - Balanced learning style -> high WMC
 - T test (comparing reflective and balanced group over WMC)
 - Reflective learning style -> low WMC
 - Balanced learning style -> high WMC

→ balanced learning style <-> low WMC
→ active learning style <-> high WMC
→ reflective learning style <-> high WMC
Results – Sensing/Intuitive Dimension

- General Analysis: significant negative correlation for size set memory span
- In-depth Analysis
 - Chi-Square Test: significant result → difference between active/balanced/reflective group
 - Correlation analysis between WMC and the absolute sen/int values: not significant
 → indication for linear correlation
 - Subset (active & balanced)
 - Correlation analysis: significant negative result for set size memory span
 Sensing learning styles <-> low WMC
 balanced learning style <-> high WMC
 - Mann-Whitney U test (comparing low and high WMC over sensing/balanced values):
 Low WMC -> sensing learning style
 High WMC -> balanced learning style
 - T test (comparing reflective and balanced group over WMC)
 Sensing learning style -> low WMC
 Balanced learning style -> high WMC
 - Subset (reflective & balanced)
 - Correlation analysis: significant negative result for mean response latency

→ Sensing learning style <-> low WMC
→ The more balances, the higher is WMC
→ No evidence about intuitive part
Results – Visual/Verbal Dimension

- General & In-depth Analysis: no significant results for bi-directional relationship

- Analysis of correlations of frequencies in sub-datasets (→ one-directional relationship)
 - Subset (low & high WMC)
 - Correlation of frequencies of vis/ver preferences: strong positive correlation for low and high WMC → argued by the fact that more learners have visual than verbal preference
 - Subset (visual and verbal learning style)
 - Correlation of frequencies of WMC groups
 - Significant positive correlation for learners with verbal preference → for verbal learners a high frequency is associated with high WMC, whereas few verbal learners have low WMC
 - No significant correlation for visual learners

→ Verbal learning style → high WMC
Results – Sequential/Global Dimension

- General & In-depth Analysis: no significant results
- Disagreement with literature (indicating that a correlation between sequential learners and high WMC as well as global learners and low WMC)
Overview of Results

- **Active/reflective:**
 - High WMC <-> balanced learning preference
 - Low WMC <-> strong active preference
 - Low WMC <-> strong reflective preference

- **Sensing/intuitive:**
 - Low WMC <-> sensing preference
 - High WMC <-> balanced learning preference

- **Visual/verbal:**
 - Verbal learning preference -> high WMC
 - Low WMC -> visual preference

- **Sequential/Global:**
 - No relationship found

→ Identified relationships can be included in the detection process of learning styles and cognitive traits
→ Improve student modelling process and lead to a more robust student model
Conclusion & Future Work

- Investigated the relationship between FSLSM and WMC by conducting a study with 297 students
- Results show a relationship between WMC and active/reflective, sensing/intuitive and visual/verbal dimension, whereas no relationship was found for the sequential/global dimension
- Relationships provide additional information about the learners which can be used to improve the detection process of learning styles or/and cognitive traits
- Future Work
 - Include the findings of this study to improve the detection process of cognitive traits in CTM
 - Include the findings of this study to improve the detection process of learning styles
 - More granular analysis by considering specific characteristics within the FSLSM dimensions