
http://www.st.informatik.tu-darmstadt.de/

On Modular Reasoning,
Information Hiding and

Aspect-Oriented Programming

Prof. Dr. Mira Mezini
Technische Universität Darmstadt

Fachbereich Informatik

AOP is …

AOP and modular reasoning

AOP and information hiding

Speculations on the future

http://www.st.informatik.tu-darmstadt.de/ 3

OOP Is…

• a “way of thinking”
– objects, classification hierarchies

• supporting mechanisms
– classes, encapsulation, polymorphism…

• allows us to
– make code look like the design
– improves design and code modularity

• many possible implementations
– style, library, ad-hoc PL extension, integrated in PL

many other
benefits build

on these

http://www.st.informatik.tu-darmstadt.de/ 4

Code Modularity ...

XML parsing in apache.tomcat is modular

• Code implementing a concern is modular if:
– it is textually local and not tangled with other concerns
– there is a well-defined interface
– the interface is an abstraction of the implementation
– the interface is enforced

http://www.st.informatik.tu-darmstadt.de/ 5

Some Concerns “don’t fit” with OOP

exception handling
performance
monitoring and
optimizations
synchronization
authentication,
access control
transaction &
persistence
management

testing pre- / post-conditions
enforcing/checking adherence to
architecture / design styles and
rules
co-ordination between objects, e.g.,
grouping semantics
…

session expiration in apache.tomcat

http://www.st.informatik.tu-darmstadt.de/ 6

signal refresh after
every display
state change

refresh implementation

what context
from change

goes to refresh
implementation

Some Concerns “don’t fit” with OOP

Display
Shape

moveBy(int, int)

Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

e.g., model view synchronization: whenever state
changes that affects the display, refresh the latter

what constitutes
display state change

2

1 *

http://www.st.informatik.tu-darmstadt.de/ 7

class Point extends FigureElement {
int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void setX(int x) {
this.x = x;
display.update(this);

}
void setY(int y) {

this.y = y;
display.update(this);

}
void moveBy(int dx, int dy) {

x += dx; y += dy;
display.update(this);

}
}

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

FigureElement

moveBy(int, int)

1Display *

Model View Synchronization “doesn’t fit”

class Line extends FigureElement {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p) {
this.p1 = p;
display.update(this);

}
void setP2(int p) {

this.p2 = p;
display.update(this);

}
void moveBy(int dx, int dy) {

p1.x += dx; p1.y += dy;
p2.x += dy; p2.y += dy;
display.update(this);

}
}

http://www.st.informatik.tu-darmstadt.de/ 8

with AOP it fits better

class Point
void setX(int nx) {
x = nx;

}
void setY(int ny) {
x = ny;

}
...

}

class Line {
void setP1(Point np1) {
p1 = np1;

}
void setP2(Point np2) {
p2 = np2;

}
...

}

class Display {
...
static void update() { ... }

}

aspect UpdateSignaling {
pointcut change(Shape s):

(execution(void Shape.moveBy(int, int)
|| execution(void Point.setX(int))
|| execution(void Point.setY(int))
|| execution(void Line.setP1(Point))
|| execution(void Line.setP2(Point)))

&& this(s);

after(Shape s) returning: change(Shape s)
{ Display.update(s); }

}

aspect UpdateSignaling {
pointcut change(Shape s):

(execution(void Shape.moveBy(..)
|| execution(void Shape+.set*(..)))

&& this(s);

pointcut topChange(Shape s):
stateChange(Shape s)

&& !cflowbelow(stateChange(Shape s))

after(Shape s) returning: change(Shape s)
{ Display.update(s); }

}

http://www.st.informatik.tu-darmstadt.de/ 9

modularity assessment

• The aspect is
– Localized and has a clear interface

• The classes are
– better localized (no invasion of updating)

• Code modularity helps design modularity

• Forest versus trees
– the global invariant is explicit, clear, modular
– the local effects can be made clear by IDE

localized interface abstraction enforced
display updating no n/a n/a n/a
Point, Line medium medium medium yes
UpdateSignaling high high medium yes
Point, Line high high high yes

AOP

non
AOP

AJDT

http://www.st.informatik.tu-darmstadt.de/ 10

just like OOP, AOP is …

• “a way of thinking”
– behavioral slices, partial models, crosscutting structure

• supporting mechanisms
– join points, pointcuts, advice + virtual classes, open

classes, intertype declarations…

• allows us to
– make code look like the design
– improve design and code modularity

• many possible implementations
– style, library, ad-hoc PL extension, integrated in PL

many other
benefits build

on these

AOP is …

AOP and modular reasoning

AOP and information hiding

Speculations on the future

http://www.st.informatik.tu-darmstadt.de/ 12

What’s a Developer to Believe?

• Aspect-oriented programming improves software
modularity by enabling modular implementation of
crosscutting concerns.

- anonymous AOP researcher

• AOP is anti-modular.
- anonymous non-AOP researcher

– I can’t understand the Point and Line in isolation
– advice can violate client assumptions
– AOP violates information hiding, since aspects may refer to

implementation details of the components

http://www.st.informatik.tu-darmstadt.de/ 13

Questions Addressed in [KiczalesMezini05]

• Does AOP improve or harm modularity?
– in presence of crosscutting concerns (CCC) improves

modularity of aspects and non-aspects
– does not harm modularity otherwise

• If AOP is modular, what is modularity?
– nearly the same idea and mechanisms as before
– except for how interfaces are determined

• aspect-aware interfaces
• interface depends on overall system configuration

http://www.st.informatik.tu-darmstadt.de/ 14

OO Interfaces

Point implements Shape
int getX();
int getY();
void setX(int);
void setY(int);
void moveBy(int, int);

Line
<similar>

http://www.st.informatik.tu-darmstadt.de/ 15

• Aspect cuts extended interface
– through Point and Line

• Interface of Point and Line
– depend on presence of aspects
– and vice-versa

aspect UpdateSignaling {
pointcut change(Shape shape):
this(shape) &&
(execution(void Shape.moveBy(int, int) ||
execution(void Shape+.set*(*)));

after(Shape s) returning: change(s) {
Display.update(s);

}
}

Aspect-Aware Interfaces

class Line {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {
this.p2 = p2;

}
}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void setX(int x) {
this.x = x;

}
void setY(int y) {
this.y = y;

}
}

http://www.st.informatik.tu-darmstadt.de/ 16

Aspect-Aware Interfaces

Point implements Shape
int getX();
int getY();
void setX(int): UpdateSignaling – after returning change();
void setY(int): UpdateSignaling – after returning change();
void moveBy(int, int): UpdateSignaling – after returning change();

Line
Point p1, p2;
Point getP1();
Point getP2();
void moveBy(int, int): UpdateSignaling – after returning change();

UpdateSignaling
after returning: change():
Point.setX(int), Point.setY(int), Point.moveBy(int, int),
Line.moveBy(int, int);

http://www.st.informatik.tu-darmstadt.de/ 17

Interface Depends on Deployment

• Main message to take away so far:
– Aspects contribute to the interface of the classes
– Classes contribute to the interface of the aspects

• Implication:
– To fully know interfaces of modules in a system,

• a configuration is needed
• a run through the modules to analyze crosscutting

– this can be mostly done automatically
• since the crosscutting structure is explicit,

http://www.st.informatik.tu-darmstadt.de/ 18

Definitions:

• Code implementing a concern is modular if:
– it is textually local
– it is not tangled with other concerns
– there is a well-defined interface
– the interface is an abstraction of the implementation
– the interface is enforced
– the module can be automatically composed

vs. “it has a well-defined interface”

http://www.st.informatik.tu-darmstadt.de/ 19

Intermediate Conclusions

• This might sound anti-modular
– But: fundamentally, display update signaling is

crosscutting.

• With AOP,
– its interface cuts through the classes,
– the structure of that interface is captured declaratively,
– the actual implementation is modularized

• Without AOP,
– the structure of the interface is implicit and the actual

implementation is not modular.

http://www.st.informatik.tu-darmstadt.de/ 20

Definitions:

• Modular reasoning
– make decisions about a module by studying only

• its implementation
• its interface
• interfaces of other modules referenced

in the module’s implementation or interface

• Expanded modular reasoning
– also study implementations of referenced modules

• Global reasoning
– have to examine all the modules in the system

http://www.st.informatik.tu-darmstadt.de/ 21

Modular Reasoning Scenario

• In the example x and y fields of Point are public
• The programmer decides to make x and y private

class Line {

...

void moveBy(int dx, int dy) {

p1.x += dx; p1.y += dy;

p2.x += dy; p2.y += dy;

}

}

(s)he must ensure
the system continues
to work as before.

• We compare :
– reasoning with traditional interfaces about the non-

AOP code against
– reasoning with AAIs about the AOP code.

http://www.st.informatik.tu-darmstadt.de/ 22

Modular Reasoning Scenario

• Both implementations start out the same
– define accessors
– global reasoning to find references to fields

• change to use accessors
• simple change to Line.moveBy method

void moveBy(int dx, int dy) {

p1.x += dx;

p1.y += dy;

...

}

void moveBy(int dx, int dy) {

p1.setX(p1.getX() + dx);

p1.setY(p1.getY() + dy);

...

}

What is the effect
of this change?

What kind of reasoning do I need
to reach a conclusion?

http://www.st.informatik.tu-darmstadt.de/ 23

Modular Reasoning Scenario

• Two pieces of information are needed:
– a specification of the invariant:

• “update after any top-level change of a shape”

– structure of the update signaling to infer that the
invariant would be violated

http://www.st.informatik.tu-darmstadt.de/ 24

Reasoning in the non-AOP Case

• Nothing in Line is likely to describe the invariant.

• Given the call Display.update(), the programmer might
look at Display
– assume, optimistically, that the documentation for the
update() includes a description of the invariant.

– expanded modular reasoning with one step leads the
programmer to the invariant

• Discovering the structure of update signaling requires
– at least further expanded modular reasoning
– in general, global reasoning

Now that I discovered the problem, how do I recover?

http://www.st.informatik.tu-darmstadt.de/ 25

Recovering in the non-AOP Case

• Add non-update-signaling methods to be called by moveBy?
– … maintenance nightmare

• The best I can do is probably to let x and y public
– … probably the reason why they were package public!

class Line {

void moveBy(int dx, int dy) {

p1.nonSignalingSetX(...);

p1.nonSignalingSetY(...);

...

}

}

class Point {
...
void setX(int nx) {

x = nx;
Display.update();

}
void nonSignalingSetX(int nx) {

x = nx;
}

}

http://www.st.informatik.tu-darmstadt.de/ 26

Reasoning in the AOP Case

• The interface of UpdateSignaling includes the complete
structure of what method executions will signal updates.
– modular reasoning provides this information

• Once the programmer understands that the change is
invalid,
– the proper fix is to use cflowbelow:
after() returning:

change() && !cflowbelow(change()) {
Display.refresh(); }

• A proper formulation of the invariant would have been in
terms of cflowbelow to start with
– Such a formulation would absorb the change

http://www.st.informatik.tu-darmstadt.de/ 27

Intermediate Conclusion

• The cost of AOP:
– We must know the set of modules with which a given

module will be deployed to know its interface

• But, for CCCs programmers inherently have to pay this
cost:
– They have to know about the total deployment

configuration to do the global reasoning required for
crosscutting concerns.

• By using AOP, they get modular reasoning benefits back,
whereas not using AOP they do not.

http://www.st.informatik.tu-darmstadt.de/ 28

The’re of Course Open Issues…

• form of the interface …
– the extensional version of it could be not just the

affected methods, but how they matched the pointcut?
– or what part they matched?
– or…

• Means of restricting aspects
– suggests restrictions should be associated with

configuration, not modules directly

• Means of expressing pointcuts
– would like to express pointcuts without reference to

names

http://www.st.informatik.tu-darmstadt.de/ 29

AOP and Behavioral Substitutability

• Two points to make in this regard:

– AOP does not conflict with existing approaches for
stating and enforcing behavioral sub-typing:

• Approaches exist that extend JML to state and check
pre- / post-conditions for advice

• Work by Krishnamurthi et al. and Katz et al. on
modular verification of advice

– AOP comes with means to express global invariants to
be imposed (also on aspects)

30http://www.st.informatik.tu-darmstadt.de/ C O D E

Shape Change Interface

public aspect ShapeChange {
public pointcut joinpoint(Shape s):
target(s)
&& (call(void Shape+.set*(..))

|| call(void Shape+.moveBy(..))
|| call(Shape+.new(..)));

public pointcut topLevelJoinpoint(Shape s):
joinpoint(s)

&& !cflowbelow(joinpoint(Shape));

protected pointcut staticscope(): within(Shape+);

protected pointcut staticmethodscope():
withincode (void Shape+.set*(..))

|| withincode(void Shape+.moveBy(..))
|| withincode(Shape+.new(..));

...

31http://www.st.informatik.tu-darmstadt.de/ C O D E

Shape Change Interface

// PROVIDES: matches only calls to Shape mutators
declare error:

(!staticmethodscope()
&& set(int FigureElement+.*)):

“Contract violation: must set Shape”
+ “ field inside setter method!”;

// REQUIRES: advisers must not change state

before():
cflow(adviceexecution())
&& joinpoint(Shape) {

ErrorHandling.signalFatal(
“Contract violation:”

+ “ advisor of ShapeChange cannot”
+ “ change Shape instances”);

}
}

32http://www.st.informatik.tu-darmstadt.de/ C O D E

Display Updating Aspect

public aspect DisplayUpdate {
after():

ShapeChange.topLevelJoinpoint(Shape s) {
updateDisplay();

}

public void updateDisplay() {
Display.update();

}
}

AOP is …

AOP and modular reasoning

AOP and information hiding

Speculations on the future

http://www.st.informatik.tu-darmstadt.de/ 34

Limited Abstraction

pointcut change():
call(Point.setX(int))

|| call(void Point.setY(int))
|| call(void Shape+.moveBy(int, int));

instead of specifying WHAT the
crosscutting structure is,

this pointcut describes HOW it appears
in the concrete syntax of the program

http://www.st.informatik.tu-darmstadt.de/ 35

Wanted: “after data changes that was
previously read during the
most recent draw of a
display, update that
display”

Robust.
Minimal knowledge about implementation details
of figure elements.

Precise.
Avoids unnecessary updates,
e.g., after calls to setX modifying an x not read in
control flow of draw

Limited Abstraction

http://www.st.informatik.tu-darmstadt.de/ 36

The Programming Language ALPHA

AST Trace Static typingHeap

pointcut abstraction via
inference rules

encode
pointcuts as
logic queries;
pointcut “fires”
if query has
non-empty
result

…

low-level user-defined pointcuts / 3rd party pointcut libraries

high-Level user-defined pointcuts / 3rd party pointcut libraries

…

Store facts about
program execution
in an extensible
list of logic DBs

… …

… …

uses/imports

Ostermann, Mezini, Bockisch, ECOOP 2005

37http://www.st.informatik.tu-darmstadt.de/ C O D E

Pointcuts in ALPHA

display d;

// cflowreach pointcut
before set (O, F, _),

get (T1, _, O, F, _),
calls (T2, _, @this.d, draw, _),
cflow(T1, T2),
reachable (O, d),

{ ... }

variables
bound via
unification

object specific
pointcut

“after data changes that was read during the
most recent redraw of a display, update that display”

38http://www.st.informatik.tu-darmstadt.de/ C O D E

Pointcuts in ALPHA

display d;

// cflowreach pointcut
before set (O, F, _),

get (T1, _, O, F, _),
calls (T2, _, @this.d, draw, _),
cflow(T1, T2),
reachable (O, d)

{ ... }

this module really “talks”
about itself … about “its
model” of the world

It doesn’t have an interface to shapes but rather to
execution space …it pattern matches points in the

execution

… or clusters them by some algorithm …

http://www.st.informatik.tu-darmstadt.de/ 39

Crosscutting Models

two models A&B crosscut when projections of their
modules into X intersect & neither is a subset of

the other

a module
(e.g., class) projection of

the module

Model A Model B

Execution Space X
(join point model)

Masuhara & Kiczales, ECOOP 2003

http://www.st.informatik.tu-darmstadt.de/ 40

Summary of the Alpha Model

• Powerful extensible temporal quantification
– precise, object-specific, history-aware, … use the data

model that best suits
– no need to build up complicated infrastructure

• observer pattern infrastructure disappears in example
– user-defined pointcuts, (domain-specific) pointcut libraries

• Extensible join point model
– easy to expose new data, e.g., profiling information,

resource usage, …

• Efficient implementation is challenging

AOP is …

AOP and modular reasoning

AOP and information hiding

Speculations on the future

http://www.st.informatik.tu-darmstadt.de/ 42

Lanier on Black-Box Abstraction…

• modules - expressions, functions, objects - little “black
boxes”
– relate to the rest through a well-defined IO interfaces

(IO-wires)

• Intuition underlying communication between modules:
– “sending pulses down a wire” - passing variables,

messages
– “single-point sampling of the world at the end of the

wire” by algorithmic protocols

http://www.amazon.com/gp/product/images/0753817101/ref=dp_image_0/002-6786655-9848047?%5Fencoding=UTF8&n=283155&s=books

http://www.st.informatik.tu-darmstadt.de/ 43

Lanier on Black-Box Abstraction…

• Programmers forced to stream intentions into sequential
steps aligned with this pipeline view of the world

• Complex algorithmic protocols needed to give meaning to
sequences of pulses
– accidental complexity!

Lanier: “world as a planet of the help desks in which
human race will be largely engaged in maintaining very

large software systems …”

44

Software Technology
Group &
Aspect-Oriented
Programming
TU-Darmstadt | FB Informatik

Lanier’s Surface Binding

• Components probe “measurable fundamental”
properties of program execution and take decisions
based on some evolving model of the world

– components connected by “surfaces” sampled at several points
in parallel

• instead of “wires sampled at single points”

– pattern classification and automatic maintenance of implicit
confirmatory and predictive models

• instead of sampling by algorithmic protocols

45http://www.st.informatik.tu-darmstadt.de/ C O D E

step towards more powerful binding?

display d;

// cflowreach pointcut
before set (O, F, _),

get (T1, _, O, F, _),
calls (T2, _, @this.d, draw, _),
cflow(T1, T2),
reachable (O, d)

{ ... }

this module really “talks”
about itself … about “its
model” of the world

It doesn’t have an interface to shapes but rather to
execution space …it pattern matches points in the

execution

… or clusters them by some algorithm …

http://www.st.informatik.tu-darmstadt.de/ 46

referencing in natural communication

/**
* encodeStream converts stream of bytes into sounds.
* @param in stream of bytes to encode
* @param out stream of audio samples representing input
*/

encodeStream(InputStream input, OutputStream output) {

while there is data in input: read N bytes from it,
perform encodeDuration on those bytes, and write
result into output

if, however, after reading the input, the number of
bytes read is less than N, then, before continuing
with writing out, patch it with zeros.

}

Crista Lopes et al. OOPSLA Onward 03

http://www.st.informatik.tu-darmstadt.de/ 47

static void encodeStream(InputStream in, OutputStream out) {
int readindex = 0;

byte[] buff = new byte[N];

while ((readindex = in.read(buff)) == N) {
out.write(Encoder.encodeDuration(buff));

}

if (readindex > 0) {
for (int i = readindex; i < N; i++) buff[i] = 0;
out.write(Encoder.encodeDuration(buff));

}
}

referencing in current PLs

Lopes et al. OOPSLA Onward 03

read

write

exceptional case

buff
buff

readindex

http://www.st.informatik.tu-darmstadt.de/ 48

static void encodeStream(InputStream in, OutputStream out) {
int readindex = 0;

byte[] buff = new byte[N];

while ((readindex = in.read(buff)) == N) {
out.write(Encoder.encodeDuration(buff));

}

if (readindex > 0) {
for (int i = readindex; i < N; i++) buff[i] = 0;
out.write(Encoder.encodeDuration(buff));

}
}

“after data changes that was read during the
most recent draw of a display, update that display”

The problem is much worse if one has to write things like

referencing in current PLs

Lopes et al. OOPSLA Onward 03

49

Software Technology
Group &
Aspect-Oriented
Programming
TU-Darmstadt | FB Informatik

Software Modularity Lab @ TUD
• Faculty:

– Mira Mezini
– Klaus Ostermann

• Research assistants
– Ivica Aracic
– Christoph Bockisch
– Marcel Bruch
– Anis Charfi
– Tom Dinkelaker
– Michael Eichberg
– Vaidas Gasiunas
– Slim Kallel
– Sven Kloppenburg
– Karl Klose
– Thorsten Schäfer
– Tobias Schuh
– NN

50

Software Technology
Group &
Aspect-Oriented
Programming
TU-Darmstadt | FB Informatik

Software Modularity Lab @ TUD

Divide and Conquer as a Construction Principle:
AO module concepts and expressive pointcut languages

Efficient compilation of AO languages and AO virtual machines
Aspect-oriented web service composition and middleware

Virtual types and advanced type systems for better supporting variations
Software product line engineering
Dynamically adaptable software

Intelligent Software Development Environments
Open static analysis and development environments

Data mining for supporting framework-based development
Tailorable software information spaces

Two complementary ways to
master software complexity.

Current Research Focus

END

	On Modular Reasoning, Information Hiding and Aspect-Oriented Programming
	OOP Is…
	Code Modularity ...
	Some Concerns “don’t fit” with OOP
	Some Concerns “don’t fit” with OOP
	Model View Synchronization “doesn’t fit”
	with AOP it fits better
	modularity assessment
	just like OOP, AOP is …
	What’s a Developer to Believe?
	Questions Addressed in [KiczalesMezini05]
	OO Interfaces
	Aspect-Aware Interfaces
	Aspect-Aware Interfaces
	Interface Depends on Deployment
	Definitions:
	Intermediate Conclusions
	Definitions:
	Modular Reasoning Scenario
	Modular Reasoning Scenario
	Modular Reasoning Scenario
	Reasoning in the non-AOP Case
	Recovering in the non-AOP Case
	Reasoning in the AOP Case
	Intermediate Conclusion
	The’re of Course Open Issues…
	AOP and Behavioral Substitutability
	Shape Change Interface
	Shape Change Interface
	Display Updating Aspect
	Limited Abstraction
	Limited Abstraction
	The Programming Language ALPHA
	Pointcuts in ALPHA
	Pointcuts in ALPHA
	Crosscutting Models
	Summary of the Alpha Model
	Lanier on Black-Box Abstraction…
	Lanier on Black-Box Abstraction…
	Lanier’s Surface Binding
	step towards more powerful binding?
	referencing in natural communication
	referencing in current PLs
	referencing in current PLs
	Software Modularity Lab @ TUD
	Software Modularity Lab @ TUD

